Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc and The InstantX Team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| from typing import Optional | |
| import numpy as np | |
| import pytest | |
| import torch | |
| from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel | |
| from diffusers import ( | |
| AutoencoderKL, | |
| FlowMatchEulerDiscreteScheduler, | |
| SD3Transformer2DModel, | |
| StableDiffusion3ControlNetPipeline, | |
| ) | |
| from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel | |
| from diffusers.utils import load_image | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| numpy_cosine_similarity_distance, | |
| require_big_gpu_with_torch_cuda, | |
| slow, | |
| torch_device, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
| pipeline_class = StableDiffusion3ControlNetPipeline | |
| params = frozenset( | |
| [ | |
| "prompt", | |
| "height", | |
| "width", | |
| "guidance_scale", | |
| "negative_prompt", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| ] | |
| ) | |
| batch_params = frozenset(["prompt", "negative_prompt"]) | |
| test_layerwise_casting = True | |
| def get_dummy_components( | |
| self, num_controlnet_layers: int = 3, qk_norm: Optional[str] = "rms_norm", use_dual_attention=False | |
| ): | |
| torch.manual_seed(0) | |
| transformer = SD3Transformer2DModel( | |
| sample_size=32, | |
| patch_size=1, | |
| in_channels=8, | |
| num_layers=4, | |
| attention_head_dim=8, | |
| num_attention_heads=4, | |
| joint_attention_dim=32, | |
| caption_projection_dim=32, | |
| pooled_projection_dim=64, | |
| out_channels=8, | |
| qk_norm=qk_norm, | |
| dual_attention_layers=() if not use_dual_attention else (0, 1), | |
| ) | |
| torch.manual_seed(0) | |
| controlnet = SD3ControlNetModel( | |
| sample_size=32, | |
| patch_size=1, | |
| in_channels=8, | |
| num_layers=num_controlnet_layers, | |
| attention_head_dim=8, | |
| num_attention_heads=4, | |
| joint_attention_dim=32, | |
| caption_projection_dim=32, | |
| pooled_projection_dim=64, | |
| out_channels=8, | |
| qk_norm=qk_norm, | |
| dual_attention_layers=() if not use_dual_attention else (0,), | |
| ) | |
| clip_text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) | |
| torch.manual_seed(0) | |
| text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) | |
| torch.manual_seed(0) | |
| text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| sample_size=32, | |
| in_channels=3, | |
| out_channels=3, | |
| block_out_channels=(4,), | |
| layers_per_block=1, | |
| latent_channels=8, | |
| norm_num_groups=1, | |
| use_quant_conv=False, | |
| use_post_quant_conv=False, | |
| shift_factor=0.0609, | |
| scaling_factor=1.5035, | |
| ) | |
| scheduler = FlowMatchEulerDiscreteScheduler() | |
| return { | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder, | |
| "text_encoder_2": text_encoder_2, | |
| "text_encoder_3": text_encoder_3, | |
| "tokenizer": tokenizer, | |
| "tokenizer_2": tokenizer_2, | |
| "tokenizer_3": tokenizer_3, | |
| "transformer": transformer, | |
| "vae": vae, | |
| "controlnet": controlnet, | |
| "image_encoder": None, | |
| "feature_extractor": None, | |
| } | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| control_image = randn_tensor( | |
| (1, 3, 32, 32), | |
| generator=generator, | |
| device=torch.device(device), | |
| dtype=torch.float16, | |
| ) | |
| controlnet_conditioning_scale = 0.5 | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "output_type": "np", | |
| "control_image": control_image, | |
| "controlnet_conditioning_scale": controlnet_conditioning_scale, | |
| } | |
| return inputs | |
| def run_pipe(self, components, use_sd35=False): | |
| sd_pipe = StableDiffusion3ControlNetPipeline(**components) | |
| sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output = sd_pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 32, 32, 3) | |
| if not use_sd35: | |
| expected_slice = np.array([0.5767, 0.7100, 0.5981, 0.5674, 0.5952, 0.4102, 0.5093, 0.5044, 0.6030]) | |
| else: | |
| expected_slice = np.array([1.0000, 0.9072, 0.4209, 0.2744, 0.5737, 0.3840, 0.6113, 0.6250, 0.6328]) | |
| assert ( | |
| np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| ), f"Expected: {expected_slice}, got: {image_slice.flatten()}" | |
| def test_controlnet_sd3(self): | |
| components = self.get_dummy_components() | |
| self.run_pipe(components) | |
| def test_controlnet_sd35(self): | |
| components = self.get_dummy_components(num_controlnet_layers=1, qk_norm="rms_norm", use_dual_attention=True) | |
| self.run_pipe(components, use_sd35=True) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| pass | |
| class StableDiffusion3ControlNetPipelineSlowTests(unittest.TestCase): | |
| pipeline_class = StableDiffusion3ControlNetPipeline | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_canny(self): | |
| controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16) | |
| pipe = StableDiffusion3ControlNetPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image" | |
| n_prompt = "NSFW, nude, naked, porn, ugly" | |
| control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg") | |
| output = pipe( | |
| prompt, | |
| negative_prompt=n_prompt, | |
| control_image=control_image, | |
| controlnet_conditioning_scale=0.5, | |
| guidance_scale=5.0, | |
| num_inference_steps=2, | |
| output_type="np", | |
| generator=generator, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (1024, 1024, 3) | |
| original_image = image[-3:, -3:, -1].flatten() | |
| expected_image = np.array([0.7314, 0.7075, 0.6611, 0.7539, 0.7563, 0.6650, 0.6123, 0.7275, 0.7222]) | |
| assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2 | |
| def test_pose(self): | |
| controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Pose", torch_dtype=torch.float16) | |
| pipe = StableDiffusion3ControlNetPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image' | |
| n_prompt = "NSFW, nude, naked, porn, ugly" | |
| control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Pose/resolve/main/pose.jpg") | |
| output = pipe( | |
| prompt, | |
| negative_prompt=n_prompt, | |
| control_image=control_image, | |
| controlnet_conditioning_scale=0.5, | |
| guidance_scale=5.0, | |
| num_inference_steps=2, | |
| output_type="np", | |
| generator=generator, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (1024, 1024, 3) | |
| original_image = image[-3:, -3:, -1].flatten() | |
| expected_image = np.array([0.9048, 0.8740, 0.8936, 0.8516, 0.8799, 0.9360, 0.8379, 0.8408, 0.8652]) | |
| assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2 | |
| def test_tile(self): | |
| controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Tile", torch_dtype=torch.float16) | |
| pipe = StableDiffusion3ControlNetPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image' | |
| n_prompt = "NSFW, nude, naked, porn, ugly" | |
| control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Tile/resolve/main/tile.jpg") | |
| output = pipe( | |
| prompt, | |
| negative_prompt=n_prompt, | |
| control_image=control_image, | |
| controlnet_conditioning_scale=0.5, | |
| guidance_scale=5.0, | |
| num_inference_steps=2, | |
| output_type="np", | |
| generator=generator, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (1024, 1024, 3) | |
| original_image = image[-3:, -3:, -1].flatten() | |
| expected_image = np.array([0.6699, 0.6836, 0.6226, 0.6572, 0.7310, 0.6646, 0.6650, 0.6694, 0.6011]) | |
| assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2 | |
| def test_multi_controlnet(self): | |
| controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16) | |
| controlnet = SD3MultiControlNetModel([controlnet, controlnet]) | |
| pipe = StableDiffusion3ControlNetPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image" | |
| n_prompt = "NSFW, nude, naked, porn, ugly" | |
| control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg") | |
| output = pipe( | |
| prompt, | |
| negative_prompt=n_prompt, | |
| control_image=[control_image, control_image], | |
| controlnet_conditioning_scale=[0.25, 0.25], | |
| guidance_scale=5.0, | |
| num_inference_steps=2, | |
| output_type="np", | |
| generator=generator, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (1024, 1024, 3) | |
| original_image = image[-3:, -3:, -1].flatten() | |
| expected_image = np.array([0.7207, 0.7041, 0.6543, 0.7500, 0.7490, 0.6592, 0.6001, 0.7168, 0.7231]) | |
| assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2 | |