Spaces:
Runtime error
Runtime error
| import gc | |
| import unittest | |
| import numpy as np | |
| import pytest | |
| import torch | |
| from diffusers import FluxPipeline, FluxPriorReduxPipeline | |
| from diffusers.utils import load_image | |
| from diffusers.utils.testing_utils import ( | |
| numpy_cosine_similarity_distance, | |
| require_big_gpu_with_torch_cuda, | |
| slow, | |
| torch_device, | |
| ) | |
| class FluxReduxSlowTests(unittest.TestCase): | |
| pipeline_class = FluxPriorReduxPipeline | |
| repo_id = "YiYiXu/yiyi-redux" # update to "black-forest-labs/FLUX.1-Redux-dev" once PR is merged | |
| base_pipeline_class = FluxPipeline | |
| base_repo_id = "black-forest-labs/FLUX.1-schnell" | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def get_inputs(self, device, seed=0): | |
| init_image = load_image( | |
| "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png" | |
| ) | |
| return {"image": init_image} | |
| def get_base_pipeline_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| return { | |
| "num_inference_steps": 2, | |
| "guidance_scale": 2.0, | |
| "output_type": "np", | |
| "generator": generator, | |
| } | |
| def test_flux_redux_inference(self): | |
| pipe_redux = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) | |
| pipe_base = self.base_pipeline_class.from_pretrained( | |
| self.base_repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None | |
| ) | |
| pipe_redux.to(torch_device) | |
| pipe_base.enable_model_cpu_offload() | |
| inputs = self.get_inputs(torch_device) | |
| base_pipeline_inputs = self.get_base_pipeline_inputs(torch_device) | |
| redux_pipeline_output = pipe_redux(**inputs) | |
| image = pipe_base(**base_pipeline_inputs, **redux_pipeline_output).images[0] | |
| image_slice = image[0, :10, :10] | |
| expected_slice = np.array( | |
| [ | |
| 0.30078125, | |
| 0.37890625, | |
| 0.46875, | |
| 0.28125, | |
| 0.36914062, | |
| 0.47851562, | |
| 0.28515625, | |
| 0.375, | |
| 0.4765625, | |
| 0.28125, | |
| 0.375, | |
| 0.48046875, | |
| 0.27929688, | |
| 0.37695312, | |
| 0.47851562, | |
| 0.27734375, | |
| 0.38085938, | |
| 0.4765625, | |
| 0.2734375, | |
| 0.38085938, | |
| 0.47265625, | |
| 0.27539062, | |
| 0.37890625, | |
| 0.47265625, | |
| 0.27734375, | |
| 0.37695312, | |
| 0.47070312, | |
| 0.27929688, | |
| 0.37890625, | |
| 0.47460938, | |
| ], | |
| dtype=np.float32, | |
| ) | |
| max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) | |
| assert max_diff < 1e-4 | |