Spaces:
Runtime error
Runtime error
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import AutoTokenizer, GemmaConfig, GemmaForCausalLM | |
| from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, LuminaNextDiT2DModel, LuminaText2ImgPipeline | |
| from diffusers.utils.testing_utils import ( | |
| numpy_cosine_similarity_distance, | |
| require_torch_gpu, | |
| slow, | |
| torch_device, | |
| ) | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| class LuminaText2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
| pipeline_class = LuminaText2ImgPipeline | |
| params = frozenset( | |
| [ | |
| "prompt", | |
| "height", | |
| "width", | |
| "guidance_scale", | |
| "negative_prompt", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| ] | |
| ) | |
| batch_params = frozenset(["prompt", "negative_prompt"]) | |
| supports_dduf = False | |
| test_layerwise_casting = True | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = LuminaNextDiT2DModel( | |
| sample_size=4, | |
| patch_size=2, | |
| in_channels=4, | |
| hidden_size=4, | |
| num_layers=2, | |
| num_attention_heads=1, | |
| num_kv_heads=1, | |
| multiple_of=16, | |
| ffn_dim_multiplier=None, | |
| norm_eps=1e-5, | |
| learn_sigma=True, | |
| qk_norm=True, | |
| cross_attention_dim=8, | |
| scaling_factor=1.0, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL() | |
| scheduler = FlowMatchEulerDiscreteScheduler() | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/dummy-gemma") | |
| torch.manual_seed(0) | |
| config = GemmaConfig( | |
| head_dim=2, | |
| hidden_size=8, | |
| intermediate_size=37, | |
| num_attention_heads=4, | |
| num_hidden_layers=2, | |
| num_key_value_heads=4, | |
| ) | |
| text_encoder = GemmaForCausalLM(config) | |
| components = { | |
| "transformer": transformer.eval(), | |
| "vae": vae.eval(), | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder.eval(), | |
| "tokenizer": tokenizer, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_lumina_prompt_embeds(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_with_prompt = pipe(**inputs).images[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| prompt = inputs.pop("prompt") | |
| do_classifier_free_guidance = inputs["guidance_scale"] > 1 | |
| ( | |
| prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_embeds, | |
| negative_prompt_attention_mask, | |
| ) = pipe.encode_prompt( | |
| prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| device=torch_device, | |
| ) | |
| output_with_embeds = pipe( | |
| prompt_embeds=prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| **inputs, | |
| ).images[0] | |
| max_diff = np.abs(output_with_prompt - output_with_embeds).max() | |
| assert max_diff < 1e-4 | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| pass | |
| class LuminaText2ImgPipelineSlowTests(unittest.TestCase): | |
| pipeline_class = LuminaText2ImgPipeline | |
| repo_id = "Alpha-VLLM/Lumina-Next-SFT-diffusers" | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def get_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| return { | |
| "prompt": "A photo of a cat", | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "output_type": "np", | |
| "generator": generator, | |
| } | |
| def test_lumina_inference(self): | |
| pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) | |
| pipe.enable_model_cpu_offload() | |
| inputs = self.get_inputs(torch_device) | |
| image = pipe(**inputs).images[0] | |
| image_slice = image[0, :10, :10] | |
| expected_slice = np.array( | |
| [ | |
| [0.17773438, 0.18554688, 0.22070312], | |
| [0.046875, 0.06640625, 0.10351562], | |
| [0.0, 0.0, 0.02148438], | |
| [0.0, 0.0, 0.0], | |
| [0.0, 0.0, 0.0], | |
| [0.0, 0.0, 0.0], | |
| [0.0, 0.0, 0.0], | |
| [0.0, 0.0, 0.0], | |
| [0.0, 0.0, 0.0], | |
| [0.0, 0.0, 0.0], | |
| ], | |
| dtype=np.float32, | |
| ) | |
| max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) | |
| assert max_diff < 1e-4 | |