Spaces:
Runtime error
Runtime error
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import random | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel | |
| from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImg2ImgPipeline | |
| from diffusers.pipelines.shap_e import ShapERenderer | |
| from diffusers.utils.testing_utils import ( | |
| floats_tensor, | |
| load_image, | |
| load_numpy, | |
| nightly, | |
| require_torch_gpu, | |
| torch_device, | |
| ) | |
| from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference | |
| class ShapEImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = ShapEImg2ImgPipeline | |
| params = ["image"] | |
| batch_params = ["image"] | |
| required_optional_params = [ | |
| "num_images_per_prompt", | |
| "num_inference_steps", | |
| "generator", | |
| "latents", | |
| "guidance_scale", | |
| "frame_size", | |
| "output_type", | |
| "return_dict", | |
| ] | |
| test_xformers_attention = False | |
| supports_dduf = False | |
| def text_embedder_hidden_size(self): | |
| return 16 | |
| def time_input_dim(self): | |
| return 16 | |
| def time_embed_dim(self): | |
| return self.time_input_dim * 4 | |
| def renderer_dim(self): | |
| return 8 | |
| def dummy_image_encoder(self): | |
| torch.manual_seed(0) | |
| config = CLIPVisionConfig( | |
| hidden_size=self.text_embedder_hidden_size, | |
| image_size=32, | |
| projection_dim=self.text_embedder_hidden_size, | |
| intermediate_size=24, | |
| num_attention_heads=2, | |
| num_channels=3, | |
| num_hidden_layers=5, | |
| patch_size=1, | |
| ) | |
| model = CLIPVisionModel(config) | |
| return model | |
| def dummy_image_processor(self): | |
| image_processor = CLIPImageProcessor( | |
| crop_size=224, | |
| do_center_crop=True, | |
| do_normalize=True, | |
| do_resize=True, | |
| image_mean=[0.48145466, 0.4578275, 0.40821073], | |
| image_std=[0.26862954, 0.26130258, 0.27577711], | |
| resample=3, | |
| size=224, | |
| ) | |
| return image_processor | |
| def dummy_prior(self): | |
| torch.manual_seed(0) | |
| model_kwargs = { | |
| "num_attention_heads": 2, | |
| "attention_head_dim": 16, | |
| "embedding_dim": self.time_input_dim, | |
| "num_embeddings": 32, | |
| "embedding_proj_dim": self.text_embedder_hidden_size, | |
| "time_embed_dim": self.time_embed_dim, | |
| "num_layers": 1, | |
| "clip_embed_dim": self.time_input_dim * 2, | |
| "additional_embeddings": 0, | |
| "time_embed_act_fn": "gelu", | |
| "norm_in_type": "layer", | |
| "embedding_proj_norm_type": "layer", | |
| "encoder_hid_proj_type": None, | |
| "added_emb_type": None, | |
| } | |
| model = PriorTransformer(**model_kwargs) | |
| return model | |
| def dummy_renderer(self): | |
| torch.manual_seed(0) | |
| model_kwargs = { | |
| "param_shapes": ( | |
| (self.renderer_dim, 93), | |
| (self.renderer_dim, 8), | |
| (self.renderer_dim, 8), | |
| (self.renderer_dim, 8), | |
| ), | |
| "d_latent": self.time_input_dim, | |
| "d_hidden": self.renderer_dim, | |
| "n_output": 12, | |
| "background": ( | |
| 0.1, | |
| 0.1, | |
| 0.1, | |
| ), | |
| } | |
| model = ShapERenderer(**model_kwargs) | |
| return model | |
| def get_dummy_components(self): | |
| prior = self.dummy_prior | |
| image_encoder = self.dummy_image_encoder | |
| image_processor = self.dummy_image_processor | |
| shap_e_renderer = self.dummy_renderer | |
| scheduler = HeunDiscreteScheduler( | |
| beta_schedule="exp", | |
| num_train_timesteps=1024, | |
| prediction_type="sample", | |
| use_karras_sigmas=True, | |
| clip_sample=True, | |
| clip_sample_range=1.0, | |
| ) | |
| components = { | |
| "prior": prior, | |
| "image_encoder": image_encoder, | |
| "image_processor": image_processor, | |
| "shap_e_renderer": shap_e_renderer, | |
| "scheduler": scheduler, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "image": input_image, | |
| "generator": generator, | |
| "num_inference_steps": 1, | |
| "frame_size": 32, | |
| "output_type": "latent", | |
| } | |
| return inputs | |
| def test_shap_e(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| output = pipe(**self.get_dummy_inputs(device)) | |
| image = output.images[0] | |
| image_slice = image[-3:, -3:].cpu().numpy() | |
| assert image.shape == (32, 16) | |
| expected_slice = np.array( | |
| [-1.0, 0.40668195, 0.57322013, -0.9469888, 0.4283227, 0.30348337, -0.81094897, 0.74555075, 0.15342723] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_inference_batch_consistent(self): | |
| # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches | |
| self._test_inference_batch_consistent(batch_sizes=[2]) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical( | |
| batch_size=2, | |
| expected_max_diff=6e-3, | |
| ) | |
| def test_num_images_per_prompt(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| batch_size = 1 | |
| num_images_per_prompt = 2 | |
| inputs = self.get_dummy_inputs(torch_device) | |
| for key in inputs.keys(): | |
| if key in self.batch_params: | |
| inputs[key] = batch_size * [inputs[key]] | |
| images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0] | |
| assert images.shape[0] == batch_size * num_images_per_prompt | |
| def test_float16_inference(self): | |
| super().test_float16_inference(expected_max_diff=1e-1) | |
| def test_save_load_local(self): | |
| super().test_save_load_local(expected_max_difference=5e-3) | |
| def test_sequential_cpu_offload_forward_pass(self): | |
| pass | |
| class ShapEImg2ImgPipelineIntegrationTests(unittest.TestCase): | |
| def setUp(self): | |
| # clean up the VRAM before each test | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_shap_e_img2img(self): | |
| input_image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" | |
| ) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/shap_e/test_shap_e_img2img_out.npy" | |
| ) | |
| pipe = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img") | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device=torch_device).manual_seed(0) | |
| images = pipe( | |
| input_image, | |
| generator=generator, | |
| guidance_scale=3.0, | |
| num_inference_steps=64, | |
| frame_size=64, | |
| output_type="np", | |
| ).images[0] | |
| assert images.shape == (20, 64, 64, 3) | |
| assert_mean_pixel_difference(images, expected_image) | |