Spaces:
Runtime error
Runtime error
| import inspect | |
| import tempfile | |
| import unittest | |
| from typing import Dict, List, Tuple | |
| import torch | |
| from diffusers import EDMEulerScheduler | |
| from .test_schedulers import SchedulerCommonTest | |
| class EDMEulerSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (EDMEulerScheduler,) | |
| forward_default_kwargs = (("num_inference_steps", 10),) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 256, | |
| "sigma_min": 0.002, | |
| "sigma_max": 80.0, | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def test_timesteps(self): | |
| for timesteps in [10, 50, 100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_full_loop_no_noise(self, num_inference_steps=10, seed=0): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| for i, t in enumerate(scheduler.timesteps): | |
| scaled_sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(scaled_sample, t) | |
| output = scheduler.step(model_output, t, sample) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 34.1855) < 1e-3 | |
| assert abs(result_mean.item() - 0.044) < 1e-3 | |
| def test_full_loop_device(self, num_inference_steps=10, seed=0): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| for i, t in enumerate(scheduler.timesteps): | |
| scaled_sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(scaled_sample, t) | |
| output = scheduler.step(model_output, t, sample) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 34.1855) < 1e-3 | |
| assert abs(result_mean.item() - 0.044) < 1e-3 | |
| # Override test_from_save_pretrained to use EDMEulerScheduler-specific logic | |
| def test_from_save_pretrained(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| scheduler.set_timesteps(num_inference_steps) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| timestep = scheduler.timesteps[0] | |
| sample = self.dummy_sample | |
| scaled_sample = scheduler.scale_model_input(sample, timestep) | |
| residual = 0.1 * scaled_sample | |
| new_scaled_sample = new_scheduler.scale_model_input(sample, timestep) | |
| new_residual = 0.1 * new_scaled_sample | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| new_output = new_scheduler.step(new_residual, timestep, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| # Override test_from_save_pretrained to use EDMEulerScheduler-specific logic | |
| def test_step_shape(self): | |
| num_inference_steps = 10 | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = self.scheduler_classes[0](**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| timestep_0 = scheduler.timesteps[0] | |
| timestep_1 = scheduler.timesteps[1] | |
| sample = self.dummy_sample | |
| scaled_sample = scheduler.scale_model_input(sample, timestep_0) | |
| residual = 0.1 * scaled_sample | |
| output_0 = scheduler.step(residual, timestep_0, sample).prev_sample | |
| output_1 = scheduler.step(residual, timestep_1, sample).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| # Override test_from_save_pretrained to use EDMEulerScheduler-specific logic | |
| def test_scheduler_outputs_equivalence(self): | |
| def set_nan_tensor_to_zero(t): | |
| t[t != t] = 0 | |
| return t | |
| def recursive_check(tuple_object, dict_object): | |
| if isinstance(tuple_object, (List, Tuple)): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif isinstance(tuple_object, Dict): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif tuple_object is None: | |
| return | |
| else: | |
| self.assertTrue( | |
| torch.allclose( | |
| set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 | |
| ), | |
| msg=( | |
| "Tuple and dict output are not equal. Difference:" | |
| f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" | |
| f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" | |
| f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." | |
| ), | |
| ) | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", 50) | |
| timestep = 0 | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| timestep = scheduler.timesteps[0] | |
| sample = self.dummy_sample | |
| scaled_sample = scheduler.scale_model_input(sample, timestep) | |
| residual = 0.1 * scaled_sample | |
| # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| outputs_dict = scheduler.step(residual, timestep, sample, **kwargs) | |
| scheduler.set_timesteps(num_inference_steps) | |
| scaled_sample = scheduler.scale_model_input(sample, timestep) | |
| residual = 0.1 * scaled_sample | |
| # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs) | |
| recursive_check(outputs_tuple, outputs_dict) | |
| def test_trained_betas(self): | |
| pass | |