Spaces:
Sleeping
Sleeping
| """ fine_tuning_app.py | |
| Running a basic chatbot app that can compare base and fine-tuned models from Hugging face. | |
| Note: | |
| - run using streamlit run fine_tuning_app.py | |
| - use free -h then sudo sysctl vm.drop_caches=2 to ensure I have cache space but this can mess up the venv | |
| - may need to run huggingface-cli login in terminal to enable access to model | |
| - Or: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/discussions/130 for above | |
| - Hugging face can use up a lot of disc space - cd ~/.cache/huggingface/hub then rm -rf <subdir> | |
| """ | |
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import transformers | |
| import time | |
| import torch | |
| from pynvml import * # needs restart of IDE to install, from nvidia-ml-py3 | |
| # --------------------------------------------------------------------------------------- | |
| # GENERAL SETUP: | |
| # --------------------------------------------------------------------------------------- | |
| DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| hf_token = "" | |
| # model_name = "thebigoed/PreFineLlama-3.1-8B" # this works badly as it does not know chat structure | |
| # model_name = "unsloth/Meta-Llama-3.1-8B-bnb-4bit" # this is what we were fine tuning - also bad without chat instruct | |
| # model_name = "Qwen/Qwen2.5-7B-Instruct" # working well now | |
| # model_name = "meta-llama/Meta-Llama-3-8B-Instruct" # very effective. NB: if using fine grained access token, make sure it can access gated repos | |
| st.title("Fine Tuning Testing") | |
| col1, col2 = st.columns(2) | |
| if 'conversation' not in st.session_state: | |
| st.session_state.conversation = [] | |
| user_input = st.text_input("You:", "") # user input | |
| def print_gpu_utilization(): | |
| # Used for basic resource monioring. | |
| nvmlInit() | |
| handle = nvmlDeviceGetHandleByIndex(0) | |
| info = nvmlDeviceGetMemoryInfo(handle) | |
| print(f"GPU memory occupied: {info.used//1024**2} MB.") | |
| # --------------------------------------------------------------------------------------- | |
| # MODEL SETUP: | |
| # --------------------------------------------------------------------------------------- | |
| def load_model(): | |
| """ Load model from Hugging face.""" | |
| print_gpu_utilization() | |
| # see https://huggingface.co/mlabonne/FineLlama-3.1-8B for how to run | |
| # https://huggingface.co/docs/transformers/main/en/chat_templating look into this to decide on how we do templating | |
| success_placeholder = st.empty() | |
| with st.spinner("Loading model... please wait"): | |
| if str(DEVICE) == "cuda:0": # may not need this, need to test on CPU if device map is okay anyway | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype="auto", device_map="auto") | |
| else: | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype="auto") | |
| model = AutoModelForCausalLM.from_pretrained(model_name, | |
| torch_dtype="auto", | |
| device_map="auto" | |
| ) | |
| # Not using terminators at the moment | |
| #terminator = tokenizer.eos_token if tokenizer.eos_token else "<|endoftext|>" | |
| success_placeholder.success("Model loaded successfully!", icon="π₯") | |
| time.sleep(2) | |
| success_placeholder.empty() | |
| print_gpu_utilization() | |
| return model, tokenizer | |
| def generate_response(): | |
| """ Query the model. """ | |
| success_placeholder = st.empty() | |
| with st.spinner("Thinking..."): | |
| # Tokenising the conversation | |
| if tokenizer.chat_template: | |
| text = tokenizer.apply_chat_template(st.session_state.conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(DEVICE) | |
| else: # base models do not have chat templates | |
| print("Assuming base model.") | |
| model_input = "" | |
| for entry in st.session_state.conversation: | |
| model_input += f"{entry['role']}: {entry['content']}\n" | |
| text = tokenizer(model_input + "assistant: ", return_tensors="pt")["input_ids"].to(DEVICE) | |
| outputs = model.generate(text, | |
| max_new_tokens=512, | |
| ) | |
| outputs = tokenizer.batch_decode(outputs[:,text.shape[1]:], skip_special_tokens=True)[0] | |
| print_gpu_utilization() | |
| success_placeholder.success("Response generated!", icon="β ") | |
| time.sleep(2) | |
| success_placeholder.empty() | |
| return outputs | |
| # --------------------------------------------------------------------------------------- | |
| # RUNTIME EVENTS: | |
| # --------------------------------------------------------------------------------------- | |
| model, tokenizer = load_model() | |
| # Submit button to send the query | |
| with col1: | |
| if st.button("send"): | |
| if user_input: | |
| st.session_state.conversation.append({"role": "user", "content": user_input}) | |
| st.session_state.conversation.append({"role": "assistant", "content": generate_response()}) | |
| # Clear button to reset | |
| with col2: | |
| if st.button("clear chat"): | |
| if user_input: | |
| st.session_state.conversation = [] | |
| # Display conversation history | |
| for chat in st.session_state.conversation: | |
| if chat['role'] == 'user': | |
| st.write(f"You: {chat['content']}") | |
| else: | |
| st.write(f"Assistant: {chat['content']}") |