Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import time | |
| import torch | |
| from pynvml import * # needs restart of IDE to install, from nvidia-ml-py3 | |
| # Get device | |
| DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Streamlit setup | |
| st.title("Telco Chat Bot") | |
| st.page_link("https://github.com/Ali-maatouk/Tele-LLMs", label="Tele-LLMs backend", icon="π±") | |
| # Add text giving credit | |
| col1, col2 = st.columns(2) | |
| if 'conversation' not in st.session_state: | |
| st.session_state.conversation = [] | |
| user_input = st.text_input("You:", "") # user input | |
| # Resource monitoring: | |
| def print_gpu_utilization(): | |
| nvmlInit() | |
| handle = nvmlDeviceGetHandleByIndex(0) | |
| info = nvmlDeviceGetMemoryInfo(handle) | |
| print(f"GPU memory occupied: {info.used//1024**2} MB.") | |
| # Model functions: | |
| def load_model(): | |
| """ Load model from Hugging face.""" | |
| print_gpu_utilization() | |
| success_placeholder = st.empty() | |
| with st.spinner("Loading model... please wait"): | |
| #model_name = "AliMaatouk/TinyLlama-1.1B-Tele" # Replace with the correct model name | |
| #model_name = "AliMaatouk/LLama-3-8B-Tele-it" | |
| model_name = "AliMaatouk/Gemma-2B-Tele" | |
| if str(DEVICE) == "cuda:0": # may not need this, need to test on CPU if device map is okay anyway | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype="auto", device_map="auto") | |
| else: | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype="auto") | |
| model = AutoModelForCausalLM.from_pretrained(model_name).to(DEVICE) | |
| success_placeholder.success("Model loaded successfully!", icon="π₯") | |
| time.sleep(2) | |
| success_placeholder.empty() | |
| return model, tokenizer | |
| def generate_response(user_input): | |
| """ Query the model. """ | |
| success_placeholder = st.empty() | |
| with st.spinner("Thinking..."): | |
| inputs = tokenizer(user_input, return_tensors="pt").to(DEVICE) | |
| #outputs = model.generate(**inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id) | |
| outputs = model.generate(**inputs, max_new_tokens=750) | |
| print_gpu_utilization() | |
| generated_tokens = outputs[0, len(inputs['input_ids'][0]):] | |
| success_placeholder.success("Response generated!", icon="β ") | |
| time.sleep(2) | |
| success_placeholder.empty() | |
| text = tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
| return text | |
| # RUNTIME EVENTS: | |
| # Load model and tokenizer | |
| model, tokenizer = load_model() | |
| # Submit button to send the query | |
| with col1: | |
| if st.button("send"): | |
| if user_input: | |
| st.session_state.conversation.append({"role": "user", "content": user_input}) | |
| # Querying model | |
| # Add a loading spinner during model loading | |
| response = generate_response(user_input) | |
| # Display bot response | |
| st.session_state.conversation.append({"role": "bot", "content": response}) | |
| # Clear button to reset | |
| with col2: | |
| if st.button("clear chat"): | |
| if user_input: | |
| st.session_state.conversation = [] | |
| # Display conversation history | |
| for chat in st.session_state.conversation: | |
| if chat['role'] == 'user': | |
| st.write(f"You: {chat['content']}") | |
| else: | |
| st.write(f"Bot: {chat['content']}") |