Spaces:
Runtime error
Runtime error
initial
Browse files- README.md +2 -13
- app.py +42 -63
- data/rag_questionAndAnwser.txt +0 -0
- model.py +118 -0
- process-documents.py +64 -0
- requirements.txt +12 -1
- setup.py +18 -0
README.md
CHANGED
|
@@ -1,13 +1,2 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
emoji: π¬
|
| 4 |
-
colorFrom: yellow
|
| 5 |
-
colorTo: purple
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 4.36.1
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: apache-2.0
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
| 1 |
+
This is a Gradio-based chatbot interface for interacting with the Resvu API. Users can input messages and receive responses from the AI.
|
| 2 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,63 +1,42 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 44 |
-
"""
|
| 45 |
-
demo = gr.ChatInterface(
|
| 46 |
-
respond,
|
| 47 |
-
additional_inputs=[
|
| 48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 51 |
-
gr.Slider(
|
| 52 |
-
minimum=0.1,
|
| 53 |
-
maximum=1.0,
|
| 54 |
-
value=0.95,
|
| 55 |
-
step=0.05,
|
| 56 |
-
label="Top-p (nucleus sampling)",
|
| 57 |
-
),
|
| 58 |
-
],
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
if __name__ == "__main__":
|
| 63 |
-
demo.launch()
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
import sys
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from utils import initialize_database
|
| 5 |
+
from model import llm_chain_response, get_response_value
|
| 6 |
+
from process_documents import create_db_from_files
|
| 7 |
+
|
| 8 |
+
def run_setup():
|
| 9 |
+
subprocess.check_call([sys.executable, "setup.py"])
|
| 10 |
+
|
| 11 |
+
# Run the setup script
|
| 12 |
+
run_setup()
|
| 13 |
+
llm_chain = llm_chain_response()
|
| 14 |
+
|
| 15 |
+
def chat_with_mistral(user_input):
|
| 16 |
+
if not user_input:
|
| 17 |
+
return "The message is not be empty."
|
| 18 |
+
response = llm_chain.invoke({"query": user_input})
|
| 19 |
+
print(response)
|
| 20 |
+
|
| 21 |
+
print("---------------Response--------------")
|
| 22 |
+
print(get_response_value(response["result"]))
|
| 23 |
+
return get_response_value(response["result"])
|
| 24 |
+
|
| 25 |
+
def main():
|
| 26 |
+
# Initialize the database
|
| 27 |
+
create_db_from_files()
|
| 28 |
+
|
| 29 |
+
# Set up and launch the Gradio interface
|
| 30 |
+
iface = gr.Interface(
|
| 31 |
+
fn=chat_with_mistral,
|
| 32 |
+
inputs=gr.components.Textbox(label="Enter Your Message"),
|
| 33 |
+
outputs=gr.components.Markdown(label="ChatbotResponse"),
|
| 34 |
+
title="Resvu AI Chatbot",
|
| 35 |
+
description="Interact with the Resvu API via this chatbot. Enter a message and get a response.",
|
| 36 |
+
examples=["Hi, how are you", "Who are you?", "What services do you offer?", "How can I find out about upcoming community events?"],
|
| 37 |
+
allow_flagging="never"
|
| 38 |
+
)
|
| 39 |
+
iface.launch()
|
| 40 |
+
|
| 41 |
+
if __name__ == "__main__":
|
| 42 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/rag_questionAndAnwser.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from unsloth import FastLanguageModel
|
| 2 |
+
import torch
|
| 3 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
| 4 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
| 5 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
| 6 |
+
|
| 7 |
+
from langchain_community.llms import CTransformers
|
| 8 |
+
from langchain.chains import RetrievalQA
|
| 9 |
+
from langchain.prompts import PromptTemplate
|
| 10 |
+
from langchain_community.embeddings import GPT4AllEmbeddings
|
| 11 |
+
from langchain_community.vectorstores import FAISS
|
| 12 |
+
from langchain_community.llms import HuggingFacePipeline
|
| 13 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
| 14 |
+
from transformers import pipeline
|
| 15 |
+
|
| 16 |
+
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
|
| 17 |
+
fourbit_models = [
|
| 18 |
+
"unsloth/mistral-7b-bnb-4bit",
|
| 19 |
+
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
|
| 20 |
+
"unsloth/llama-2-7b-bnb-4bit",
|
| 21 |
+
"unsloth/llama-2-13b-bnb-4bit",
|
| 22 |
+
"unsloth/codellama-34b-bnb-4bit",
|
| 23 |
+
"unsloth/tinyllama-bnb-4bit",
|
| 24 |
+
"unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster!
|
| 25 |
+
"unsloth/gemma-2b-bnb-4bit",
|
| 26 |
+
] # More models at https://huggingface.co/unsloth
|
| 27 |
+
|
| 28 |
+
template = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
| 29 |
+
|
| 30 |
+
### Instruction:
|
| 31 |
+
You are ResVuAssist and You are a helpful bot who reads texts and answers questions about them.
|
| 32 |
+
|
| 33 |
+
### Input:
|
| 34 |
+
{context}
|
| 35 |
+
QUESTION: {question}
|
| 36 |
+
|
| 37 |
+
### Response:
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
# Cau hinh
|
| 41 |
+
vector_db_path = "vectorstores/db_faiss"
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def initialModelAndTokenizer():
|
| 45 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 46 |
+
model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
|
| 47 |
+
max_seq_length = max_seq_length,
|
| 48 |
+
dtype = dtype,
|
| 49 |
+
load_in_4bit = load_in_4bit,
|
| 50 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
| 51 |
+
)
|
| 52 |
+
model = FastLanguageModel.get_peft_model(
|
| 53 |
+
model,
|
| 54 |
+
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
| 55 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
| 56 |
+
"gate_proj", "up_proj", "down_proj",],
|
| 57 |
+
lora_alpha = 16,
|
| 58 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
| 59 |
+
bias = "none", # Supports any, but = "none" is optimized
|
| 60 |
+
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
| 61 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
| 62 |
+
random_state = 3407,
|
| 63 |
+
use_rslora = False, # We support rank stabilized LoRA
|
| 64 |
+
loftq_config = None, # And LoftQ
|
| 65 |
+
)
|
| 66 |
+
return model, tokenizer
|
| 67 |
+
|
| 68 |
+
def create_pipeline():
|
| 69 |
+
model, tokenizer = initialModelAndTokenizer()
|
| 70 |
+
pipe = pipeline(
|
| 71 |
+
"text-generation",
|
| 72 |
+
model=model,
|
| 73 |
+
tokenizer=tokenizer,
|
| 74 |
+
max_new_tokens=512,
|
| 75 |
+
temperature=0.1,
|
| 76 |
+
top_p=0.95,
|
| 77 |
+
repetition_penalty=1.15
|
| 78 |
+
)
|
| 79 |
+
return pipe
|
| 80 |
+
|
| 81 |
+
# Tao prompt template
|
| 82 |
+
def creat_prompt(template):
|
| 83 |
+
prompt = PromptTemplate(template = template, input_variables=["context", "question"])
|
| 84 |
+
return prompt
|
| 85 |
+
|
| 86 |
+
# Tao simple chain
|
| 87 |
+
def create_qa_chain(prompt, llm, db):
|
| 88 |
+
llm_chain = RetrievalQA.from_chain_type(
|
| 89 |
+
llm = llm,
|
| 90 |
+
chain_type= "stuff",
|
| 91 |
+
# retriever = db.as_retriever(search_kwargs = {"k":8}, max_tokens_limit=1024),
|
| 92 |
+
retriever = db.as_retriever(search_kwargs = {"k": 15}, max_tokens_limit=4096),
|
| 93 |
+
return_source_documents = False,
|
| 94 |
+
chain_type_kwargs= {'prompt': prompt},
|
| 95 |
+
)
|
| 96 |
+
return llm_chain
|
| 97 |
+
|
| 98 |
+
# Read tu VectorDB
|
| 99 |
+
def read_vectors_db():
|
| 100 |
+
# Embeding
|
| 101 |
+
embedding_model = GPT4AllEmbeddings(model_name="all-MiniLM-L6-v2.gguf2.f16.gguf")
|
| 102 |
+
db = FAISS.load_local(vector_db_path, embedding_model, allow_dangerous_deserialization=True)
|
| 103 |
+
return db
|
| 104 |
+
|
| 105 |
+
def get_response_value(text):
|
| 106 |
+
start = text.find('### Response:')
|
| 107 |
+
if start != -1:
|
| 108 |
+
return text[start + len('### Response:'):].strip()
|
| 109 |
+
return None
|
| 110 |
+
|
| 111 |
+
def llm_chain_response():
|
| 112 |
+
pipe = create_pipeline()
|
| 113 |
+
db = read_vectors_db()
|
| 114 |
+
prompt = creat_prompt(template)
|
| 115 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 116 |
+
|
| 117 |
+
llm_chain =create_qa_chain(prompt, llm, db)
|
| 118 |
+
return llm_chain
|
process-documents.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
| 2 |
+
from langchain_community.document_loaders import UnstructuredFileLoader, DirectoryLoader
|
| 3 |
+
from langchain_community.vectorstores import FAISS
|
| 4 |
+
from langchain_community.embeddings import GPT4AllEmbeddings
|
| 5 |
+
|
| 6 |
+
# Khai bao bien
|
| 7 |
+
pdf_data_path = "/data"
|
| 8 |
+
vector_db_path = "vectorstores/db_faiss"
|
| 9 |
+
|
| 10 |
+
# Ham 1. Tao ra vector DB tu 1 doan text
|
| 11 |
+
def create_db_from_text():
|
| 12 |
+
raw_text = """
|
| 13 |
+
Thinh created you who is a chatbox at Resvu,
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
# Chia nho van ban
|
| 17 |
+
text_splitter = CharacterTextSplitter(
|
| 18 |
+
separator="\n",
|
| 19 |
+
chunk_size=100,
|
| 20 |
+
chunk_overlap=20,
|
| 21 |
+
length_function=len
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
chunks = text_splitter.split_text(raw_text)
|
| 25 |
+
|
| 26 |
+
# Embeding
|
| 27 |
+
embedding_model = GPT4AllEmbeddings(model_name="all-MiniLM-L6-v2.gguf2.f16.gguf")
|
| 28 |
+
|
| 29 |
+
# Dua vao Faiss Vector DB
|
| 30 |
+
db = FAISS.from_texts(texts=chunks, embedding=embedding_model)
|
| 31 |
+
db.save_local(vector_db_path)
|
| 32 |
+
return db
|
| 33 |
+
|
| 34 |
+
# Define the file types you want to load
|
| 35 |
+
file_types = ["*.pdf", "*.txt", "*.doc", "*.docx"]
|
| 36 |
+
|
| 37 |
+
def create_db_from_files():
|
| 38 |
+
# Khai bao loader de quet toan bo thu muc dataa
|
| 39 |
+
# loader = DirectoryLoader(pdf_data_path, glob=file_types, loader_cls = PyPDFLoader)
|
| 40 |
+
# documents = loader.load()
|
| 41 |
+
|
| 42 |
+
# Create a loader for each file type
|
| 43 |
+
loaders = []
|
| 44 |
+
for file_type in file_types:
|
| 45 |
+
loader = DirectoryLoader(
|
| 46 |
+
pdf_data_path,
|
| 47 |
+
glob=file_type,
|
| 48 |
+
loader_cls=UnstructuredFileLoader
|
| 49 |
+
)
|
| 50 |
+
loaders.append(loader)
|
| 51 |
+
|
| 52 |
+
# Load all documents
|
| 53 |
+
documents = []
|
| 54 |
+
for loader in loaders:
|
| 55 |
+
documents.extend(loader.load())
|
| 56 |
+
|
| 57 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)
|
| 58 |
+
chunks = text_splitter.split_documents(documents)
|
| 59 |
+
|
| 60 |
+
# Embeding
|
| 61 |
+
embedding_model = GPT4AllEmbeddings(model_name="all-MiniLM-L6-v2.gguf2.f16.gguf")
|
| 62 |
+
db = FAISS.from_documents(chunks, embedding_model)
|
| 63 |
+
db.save_local(vector_db_path)
|
| 64 |
+
return db
|
requirements.txt
CHANGED
|
@@ -1 +1,12 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
langchain
|
| 3 |
+
langchain-community
|
| 4 |
+
torch
|
| 5 |
+
pypdf
|
| 6 |
+
sentence-transformers
|
| 7 |
+
gpt4all
|
| 8 |
+
faiss-cpu
|
| 9 |
+
openai
|
| 10 |
+
gradio
|
| 11 |
+
unstructured
|
| 12 |
+
python-docx
|
setup.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
def install(package):
|
| 5 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
| 6 |
+
|
| 7 |
+
def setup_environment():
|
| 8 |
+
print("Installing required packages...")
|
| 9 |
+
install('git+https://github.com/unslothai/unsloth.git#egg=unsloth[colab-new]')
|
| 10 |
+
install('--no-deps xformers')
|
| 11 |
+
install('trl<0.9.0')
|
| 12 |
+
install('peft')
|
| 13 |
+
install('accelerate')
|
| 14 |
+
install('bitsandbytes')
|
| 15 |
+
print("Packages installed successfully.")
|
| 16 |
+
|
| 17 |
+
if __name__ == "__main__":
|
| 18 |
+
setup_environment()
|