Spaces:
Running
Running
File size: 16,172 Bytes
2020af8 8602b6d 2020af8 8304cf1 2020af8 8304cf1 2020af8 8602b6d 2020af8 8602b6d 2020af8 a092a2b 8304cf1 a092a2b 8304cf1 a092a2b 8304cf1 a092a2b 8304cf1 a092a2b 8304cf1 2020af8 8602b6d 2020af8 8602b6d 2020af8 8602b6d 2020af8 fc2ea23 2020af8 8304cf1 8602b6d 8304cf1 2020af8 8602b6d 2020af8 8602b6d 2020af8 8602b6d 2020af8 8602b6d 2020af8 8304cf1 2020af8 fc2ea23 2020af8 fc2ea23 2020af8 8304cf1 2020af8 8602b6d 2020af8 8304cf1 2020af8 fc2ea23 2020af8 8602b6d fc2ea23 2020af8 fc642fe 8602b6d 8304cf1 8602b6d 8304cf1 2020af8 8304cf1 2020af8 8304cf1 2020af8 8304cf1 2020af8 8304cf1 8602b6d 8304cf1 8602b6d 8304cf1 fc642fe 8304cf1 8602b6d 8304cf1 8602b6d 8304cf1 fc2ea23 584b383 8602b6d fc2ea23 2020af8 8602b6d 584b383 fc2ea23 2020af8 8602b6d 2020af8 8602b6d fc2ea23 2020af8 fc2ea23 2020af8 8602b6d fc2ea23 2020af8 fc2ea23 8602b6d 2020af8 fc2ea23 8602b6d 2020af8 8602b6d 2020af8 8602b6d 2020af8 8602b6d 2020af8 fc2ea23 8602b6d fc642fe fc2ea23 8602b6d 2020af8 8602b6d fc2ea23 8602b6d 2020af8 8602b6d 2020af8 fc2ea23 8304cf1 fc2ea23 8304cf1 8602b6d fc2ea23 8602b6d fc2ea23 584b383 fc2ea23 8602b6d fc2ea23 584b383 fc2ea23 584b383 fc2ea23 fc642fe 2020af8 8602b6d 584b383 8602b6d 8304cf1 fc2ea23 a092a2b 8304cf1 2020af8 fc2ea23 62ca522 9795c79 fc2ea23 a092a2b fc2ea23 62ca522 fc2ea23 9795c79 fc2ea23 267abd0 fc2ea23 9795c79 fc2ea23 62ca522 fc2ea23 9795c79 fc2ea23 62ca522 8602b6d fc2ea23 8602b6d fc2ea23 2020af8 8602b6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import os
os.environ["GRADIO_TEMP_DIR"] = "./tmp"
import sys
import torch
import torchvision
import gradio as gr
import numpy as np
import cv2
from PIL import Image
from transformers import (
DFineForObjectDetection,
RTDetrV2ForObjectDetection,
RTDetrImageProcessor,
)
# == Device configuration ==
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# == Model configurations ==
MODELS = {
"Docling Layout Egret XLarge": {
"path": "ds4sd/docling-layout-egret-xlarge",
"model_class": DFineForObjectDetection
},
"Docling Layout Egret Large": {
"path": "ds4sd/docling-layout-egret-large",
"model_class": DFineForObjectDetection
},
"Docling Layout Egret Medium": {
"path": "ds4sd/docling-layout-egret-medium",
"model_class": DFineForObjectDetection
},
"Docling Layout Heron 101": {
"path": "ds4sd/docling-layout-heron-101",
"model_class": RTDetrV2ForObjectDetection
},
"Docling Layout Heron": {
"path": "ds4sd/docling-layout-heron",
"model_class": RTDetrV2ForObjectDetection
}
}
# == Class mappings ==
classes_map = {
0: "Caption", 1: "Footnote", 2: "Formula", 3: "List-item",
4: "Page-footer", 5: "Page-header", 6: "Picture", 7: "Section-header",
8: "Table", 9: "Text", 10: "Title", 11: "Document Index",
12: "Code", 13: "Checkbox-Selected", 14: "Checkbox-Unselected",
15: "Form", 16: "Key-Value Region",
}
# == Global model variables ==
current_model = None
current_processor = None
current_model_name = None
cached_results = None # Para guardar los resultados y poder cambiar labels sin reprocesar
def colormap(N=256, normalized=False):
"""Generate dynamic colormap."""
def bitget(byteval, idx):
return ((byteval & (1 << idx)) != 0)
cmap = np.zeros((N, 3), dtype=np.uint8)
for i in range(N):
r = g = b = 0
c = i
for j in range(8):
r = r | (bitget(c, 0) << (7 - j))
g = g | (bitget(c, 1) << (7 - j))
b = b | (bitget(c, 2) << (7 - j))
c = c >> 3
cmap[i] = np.array([r, g, b])
if normalized:
cmap = cmap.astype(np.float32) / 255.0
return cmap
def iomin(box1, box2):
"""Intersection over Minimum (IoMin)."""
x1 = torch.max(box1[:, 0], box2[:, 0])
y1 = torch.max(box1[:, 1], box2[:, 1])
x2 = torch.min(box1[:, 2], box2[:, 2])
y2 = torch.min(box1[:, 3], box2[:, 3])
inter_area = torch.clamp(x2 - x1, min=0) * torch.clamp(y2 - y1, min=0)
box1_area = (box1[:, 2] - box1[:, 0]) * (box1[:, 3] - box1[:, 1])
box2_area = (box2[:, 2] - box2[:, 0]) * (box2[:, 3] - box2[:, 1])
min_area = torch.min(box1_area, box2_area)
return inter_area / min_area
def nms_custom(boxes, scores, iou_threshold=0.5):
"""Custom NMS implementation using IoMin."""
keep = []
_, order = scores.sort(descending=True)
while order.numel() > 0:
i = order[0]
keep.append(i.item())
if order.numel() == 1:
break
box_i = boxes[i].unsqueeze(0)
rest = order[1:]
ious = iomin(box_i, boxes[rest])
mask = (ious <= iou_threshold)
order = order[1:][mask]
return torch.tensor(keep, dtype=torch.long)
def load_model_if_needed(model_name):
"""Load the selected model if not already loaded."""
global current_model, current_processor, current_model_name
if current_model_name == model_name and current_model is not None:
return True
try:
model_info = MODELS[model_name]
model_path = model_info["path"]
model_class = model_info["model_class"]
print(f"Loading {model_name} from {model_path}")
processor = RTDetrImageProcessor.from_pretrained(model_path)
model = model_class.from_pretrained(model_path)
model = model.to(device)
model.eval()
current_processor = processor
current_model = model
current_model_name = model_name
return True
except Exception as e:
print(f"Error loading model: {e}")
return False
def visualize_bbox(image_input, bboxes, classes, scores, id_to_names, alpha=0.3, show_labels=True):
"""Visualize bounding boxes with OpenCV."""
if isinstance(image_input, Image.Image):
image = np.array(image_input)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
elif isinstance(image_input, np.ndarray):
if len(image_input.shape) == 3 and image_input.shape[2] == 3:
image = cv2.cvtColor(image_input, cv2.COLOR_RGB2BGR)
else:
image = image_input.copy()
else:
raise ValueError("Input must be PIL Image or numpy array")
if len(bboxes) == 0:
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
overlay = image.copy()
cmap = colormap(N=len(id_to_names), normalized=False)
for i in range(len(bboxes)):
try:
bbox = bboxes[i]
if torch.is_tensor(bbox):
bbox = bbox.cpu().numpy()
class_id = classes[i]
if torch.is_tensor(class_id):
class_id = class_id.item()
score = scores[i]
if torch.is_tensor(score):
score = score.item()
x_min, y_min, x_max, y_max = map(int, bbox)
class_id = int(class_id)
class_name = id_to_names.get(class_id, f"unknown_{class_id}")
color = tuple(int(c) for c in cmap[class_id % len(cmap)])
# Draw filled rectangle on overlay
cv2.rectangle(overlay, (x_min, y_min), (x_max, y_max), color, -1)
# Draw border on main image
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, 3)
# Add text label only if show_labels is True
if show_labels:
text = f"{class_name}: {score:.3f}"
(text_width, text_height), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2)
cv2.rectangle(image, (x_min, y_min - text_height - baseline - 4),
(x_min + text_width + 8, y_min), color, -1)
cv2.putText(image, text, (x_min + 4, y_min - 6), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
except Exception as e:
print(f"Skipping box {i} due to error: {e}")
# Apply transparency
cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0, image)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
def toggle_labels_visualization(show_labels, alpha):
"""Toggle labels without reprocessing the image."""
global cached_results
if cached_results is None:
return None, "β οΈ No cached results. Please analyze an image first."
input_img, boxes, labels, scores = cached_results
output = visualize_bbox(input_img, boxes, labels, scores, classes_map, alpha=alpha, show_labels=show_labels)
labels_status = "with labels" if show_labels else "without labels"
info = f"β
Visualization updated ({labels_status}) | {len(boxes)} detections"
return output, info
def process_image(input_img, model_name, conf_threshold, iou_threshold, nms_method, alpha, show_labels):
"""Process image with document layout detection."""
global cached_results
if input_img is None:
return None, "β Please upload an image first."
# Load model if needed
if not load_model_if_needed(model_name):
return None, f"β Failed to load model {model_name}."
try:
# Prepare image
if isinstance(input_img, np.ndarray):
input_img = Image.fromarray(input_img)
if input_img.mode != 'RGB':
input_img = input_img.convert('RGB')
# Process with model
inputs = current_processor(images=[input_img], return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = current_model(**inputs)
# Post-process results
results = current_processor.post_process_object_detection(
outputs,
target_sizes=torch.tensor([input_img.size[::-1]]),
threshold=conf_threshold,
)
if not results or len(results) == 0:
cached_results = None
return np.array(input_img), "βΉοΈ No detections found."
result = results[0]
boxes = result["boxes"]
scores = result["scores"]
labels = result["labels"]
if len(boxes) == 0:
cached_results = None
return np.array(input_img), f"βΉοΈ No detections above threshold {conf_threshold:.2f}."
# Apply NMS
if iou_threshold < 1.0:
if nms_method == "Custom IoMin":
keep_indices = nms_custom(boxes=boxes, scores=scores, iou_threshold=iou_threshold)
else:
keep_indices = torchvision.ops.nms(boxes, scores, iou_threshold)
boxes = boxes[keep_indices]
scores = scores[keep_indices]
labels = labels[keep_indices]
# Cache results for label toggling
cached_results = (input_img, boxes, labels, scores)
# Visualize results
output = visualize_bbox(input_img, boxes, labels, scores, classes_map, alpha=alpha, show_labels=show_labels)
labels_status = "with labels" if show_labels else "without labels"
info = f"β
Found {len(boxes)} detections ({labels_status}) | Model: {model_name} | NMS: {nms_method} | Conf: {conf_threshold:.2f}"
return output, info
except Exception as e:
print(f"[ERROR] process_image failed: {e}")
cached_results = None
error_msg = f"β Processing error: {str(e)}"
if input_img is not None:
return np.array(input_img), error_msg
return np.zeros((512, 512, 3), dtype=np.uint8), error_msg
if __name__ == "__main__":
print(f"π Starting Document Layout Analysis App")
print(f"π± Device: {device}")
print(f"π€ Available models: {len(MODELS)}")
# Custom CSS for clean layout
custom_css = """
.gradio-container {
max-width: 100% !important;
padding: 15px !important;
}
.control-panel {
background: #f8f9fa;
border-radius: 12px;
border: 1px solid #e9ecef;
padding: 20px;
margin-bottom: 15px;
}
.results-panel {
background: #f8f9fa;
border-radius: 12px;
border: 1px solid #e9ecef;
padding: 20px;
min-height: 600px;
}
"""
# Create Gradio interface
with gr.Blocks(
title="π Document Layout Analysis",
theme=gr.themes.Soft(),
css=custom_css
) as demo:
# Header
gr.HTML("""
<div style='text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 12px; margin-bottom: 20px;'>
<h1 style='margin: 0; font-size: 2.5em;'>π Document Layout Analysis</h1>
<p style='margin: 8px 0 0 0; font-size: 1.1em; opacity: 0.9;'>Advanced document structure detection with Docling models </p>
</div>
""")
# Main content in two columns
with gr.Row():
# LEFT COLUMN - Controls (more compact)
with gr.Column(scale=1):
with gr.Group(elem_classes=["control-panel"]):
# 1. Image Upload (first)
gr.HTML("<h3>π Upload Image</h3>")
input_img = gr.Image(
label="Document Image",
type="pil",
height=300,
interactive=True
)
# gr.HTML("<br><h3>π€ Model Selection</h3>")
# 2. Model Selection (second, without buttons)
model_dropdown = gr.Dropdown(
choices=list(MODELS.keys()),
value="Docling Layout Egret XLarge",
label="AI Model",
info="Model will be loaded automatically",
interactive=True
)
# gr.HTML("<br><h3>βοΈ Parameters</h3>")
# 3. All parameters together (third)
with gr.Row():
conf_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.6, step=0.05,
label="Confidence", info="Detection threshold"
)
iou_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.5, step=0.05,
label="NMS IoU", info="Suppression threshold"
)
with gr.Row():
nms_method = gr.Radio(
choices=["Standard IoU", "Custom IoMin"],
value="Standard IoU",
label="NMS Method", scale=2
)
alpha_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=0.3, step=0.1,
label="Transparency", scale=1
)
# gr.HTML("<br>")
# 4. Analyze button (last)
analyze_btn = gr.Button("π Analyze Document", variant="primary", size="lg")
# RIGHT COLUMN - Results
with gr.Column(scale=1):
with gr.Group(elem_classes=["results-panel"]):
gr.HTML("<h3>π― Analysis Results</h3>")
output_img = gr.Image(
label="Detected Layout",
type="numpy",
height=450,
interactive=False
)
detection_info = gr.Textbox(
label="Detection Summary",
value="",
interactive=False,
lines=2,
placeholder="Results will appear here..."
)
# Labels toggle (independent control)
# gr.HTML("<h4>π¨ Visualization</h4>")
show_labels_checkbox = gr.Checkbox(
value=True,
label="Show Class Labels",
info="Toggle labels without reprocessing",
interactive=True
)
# Event Handlers
# Main analysis (full processing)
analyze_btn.click(
fn=process_image,
inputs=[input_img, model_dropdown, conf_threshold, iou_threshold, nms_method, alpha_slider, show_labels_checkbox],
outputs=[output_img, detection_info]
)
# Independent label toggle (no reprocessing)
show_labels_checkbox.change(
fn=toggle_labels_visualization,
inputs=[show_labels_checkbox, alpha_slider],
outputs=[output_img, detection_info]
)
# Also update visualization when transparency changes (if we have cached results)
alpha_slider.change(
fn=toggle_labels_visualization,
inputs=[show_labels_checkbox, alpha_slider],
outputs=[output_img, detection_info]
)
# Launch application
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
share=False,
show_error=True,
inbrowser=True
) |