File size: 16,172 Bytes
2020af8
 
 
 
 
8602b6d
2020af8
 
8304cf1
 
2020af8
 
8304cf1
2020af8
 
 
8602b6d
2020af8
 
8602b6d
2020af8
a092a2b
8304cf1
 
 
a092a2b
8304cf1
 
 
a092a2b
8304cf1
 
 
a092a2b
8304cf1
 
 
a092a2b
8304cf1
 
 
2020af8
 
8602b6d
2020af8
8602b6d
 
 
 
 
2020af8
 
8602b6d
2020af8
 
 
fc2ea23
2020af8
8304cf1
8602b6d
8304cf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2020af8
8602b6d
2020af8
 
 
 
 
8602b6d
2020af8
 
 
8602b6d
2020af8
 
8602b6d
 
2020af8
 
 
 
 
 
 
 
 
 
8304cf1
2020af8
 
 
 
 
 
 
 
fc2ea23
 
2020af8
 
fc2ea23
 
2020af8
 
8304cf1
 
 
2020af8
8602b6d
 
2020af8
8304cf1
2020af8
 
 
 
 
 
 
fc2ea23
2020af8
 
8602b6d
fc2ea23
2020af8
fc642fe
8602b6d
8304cf1
 
 
 
 
 
 
 
 
 
 
 
 
 
8602b6d
 
 
8304cf1
2020af8
8304cf1
 
 
2020af8
8304cf1
 
 
2020af8
8304cf1
 
 
 
 
 
 
2020af8
8304cf1
 
8602b6d
8304cf1
8602b6d
 
8304cf1
fc642fe
 
 
 
 
 
 
8304cf1
 
 
 
8602b6d
8304cf1
8602b6d
8304cf1
 
fc2ea23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584b383
8602b6d
fc2ea23
 
2020af8
8602b6d
584b383
 
fc2ea23
 
2020af8
 
8602b6d
2020af8
 
 
 
 
 
8602b6d
fc2ea23
2020af8
 
 
fc2ea23
2020af8
8602b6d
fc2ea23
2020af8
 
 
 
 
 
fc2ea23
8602b6d
2020af8
 
 
 
 
 
 
fc2ea23
8602b6d
2020af8
8602b6d
2020af8
 
8602b6d
2020af8
8602b6d
2020af8
 
 
 
 
fc2ea23
 
 
8602b6d
fc642fe
 
 
fc2ea23
8602b6d
 
2020af8
 
8602b6d
fc2ea23
8602b6d
2020af8
 
 
 
 
8602b6d
 
 
2020af8
fc2ea23
8304cf1
 
fc2ea23
 
8304cf1
8602b6d
fc2ea23
8602b6d
 
fc2ea23
584b383
fc2ea23
8602b6d
 
fc2ea23
 
584b383
fc2ea23
584b383
fc2ea23
fc642fe
2020af8
 
8602b6d
 
584b383
8602b6d
 
 
 
8304cf1
 
fc2ea23
 
a092a2b
8304cf1
 
2020af8
fc2ea23
 
 
 
 
 
 
 
 
 
 
 
 
62ca522
 
9795c79
fc2ea23
 
 
a092a2b
fc2ea23
 
 
62ca522
fc2ea23
9795c79
fc2ea23
 
 
 
 
 
 
 
 
 
 
 
 
267abd0
 
fc2ea23
 
 
 
 
 
 
9795c79
fc2ea23
 
 
 
 
 
 
 
 
 
 
 
 
62ca522
 
fc2ea23
 
 
 
 
 
 
 
 
9795c79
fc2ea23
 
 
 
 
62ca522
8602b6d
fc2ea23
 
 
 
8602b6d
fc2ea23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2020af8
 
 
8602b6d
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import os
os.environ["GRADIO_TEMP_DIR"] = "./tmp"

import sys
import torch
import torchvision
import gradio as gr
import numpy as np
import cv2
from PIL import Image
from transformers import (
    DFineForObjectDetection,
    RTDetrV2ForObjectDetection,
    RTDetrImageProcessor,
)

# == Device configuration ==
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# == Model configurations ==
MODELS = {
    "Docling Layout Egret XLarge": {
        "path": "ds4sd/docling-layout-egret-xlarge",
        "model_class": DFineForObjectDetection
    },
    "Docling Layout Egret Large": {
        "path": "ds4sd/docling-layout-egret-large",
        "model_class": DFineForObjectDetection
    },
    "Docling Layout Egret Medium": {
        "path": "ds4sd/docling-layout-egret-medium", 
        "model_class": DFineForObjectDetection
    },
    "Docling Layout Heron 101": {
        "path": "ds4sd/docling-layout-heron-101",
        "model_class": RTDetrV2ForObjectDetection
    },
    "Docling Layout Heron": {
        "path": "ds4sd/docling-layout-heron",
        "model_class": RTDetrV2ForObjectDetection
    }
}

# == Class mappings ==
classes_map = {
    0: "Caption", 1: "Footnote", 2: "Formula", 3: "List-item",
    4: "Page-footer", 5: "Page-header", 6: "Picture", 7: "Section-header",
    8: "Table", 9: "Text", 10: "Title", 11: "Document Index",
    12: "Code", 13: "Checkbox-Selected", 14: "Checkbox-Unselected", 
    15: "Form", 16: "Key-Value Region",
}

# == Global model variables ==
current_model = None
current_processor = None
current_model_name = None
cached_results = None  # Para guardar los resultados y poder cambiar labels sin reprocesar

def colormap(N=256, normalized=False):
    """Generate dynamic colormap."""
    def bitget(byteval, idx):
        return ((byteval & (1 << idx)) != 0)

    cmap = np.zeros((N, 3), dtype=np.uint8)
    for i in range(N):
        r = g = b = 0
        c = i
        for j in range(8):
            r = r | (bitget(c, 0) << (7 - j))
            g = g | (bitget(c, 1) << (7 - j))
            b = b | (bitget(c, 2) << (7 - j))
            c = c >> 3
        cmap[i] = np.array([r, g, b])
    
    if normalized:
        cmap = cmap.astype(np.float32) / 255.0
    return cmap

def iomin(box1, box2):
    """Intersection over Minimum (IoMin)."""
    x1 = torch.max(box1[:, 0], box2[:, 0])
    y1 = torch.max(box1[:, 1], box2[:, 1])
    x2 = torch.min(box1[:, 2], box2[:, 2])
    y2 = torch.min(box1[:, 3], box2[:, 3])
    inter_area = torch.clamp(x2 - x1, min=0) * torch.clamp(y2 - y1, min=0)
    
    box1_area = (box1[:, 2] - box1[:, 0]) * (box1[:, 3] - box1[:, 1])
    box2_area = (box2[:, 2] - box2[:, 0]) * (box2[:, 3] - box2[:, 1])
    min_area = torch.min(box1_area, box2_area)
    
    return inter_area / min_area

def nms_custom(boxes, scores, iou_threshold=0.5):
    """Custom NMS implementation using IoMin."""
    keep = []
    _, order = scores.sort(descending=True)

    while order.numel() > 0:
        i = order[0]
        keep.append(i.item())

        if order.numel() == 1:
            break

        box_i = boxes[i].unsqueeze(0)
        rest = order[1:]
        ious = iomin(box_i, boxes[rest])

        mask = (ious <= iou_threshold)
        order = order[1:][mask]

    return torch.tensor(keep, dtype=torch.long)

def load_model_if_needed(model_name):
    """Load the selected model if not already loaded."""
    global current_model, current_processor, current_model_name
    
    if current_model_name == model_name and current_model is not None:
        return True
    
    try:
        model_info = MODELS[model_name]
        model_path = model_info["path"]
        model_class = model_info["model_class"]
        
        print(f"Loading {model_name} from {model_path}")
        
        processor = RTDetrImageProcessor.from_pretrained(model_path)
        model = model_class.from_pretrained(model_path)
        model = model.to(device)
        model.eval()
        
        current_processor = processor
        current_model = model
        current_model_name = model_name
        
        return True
        
    except Exception as e:
        print(f"Error loading model: {e}")
        return False

def visualize_bbox(image_input, bboxes, classes, scores, id_to_names, alpha=0.3, show_labels=True):
    """Visualize bounding boxes with OpenCV."""
    if isinstance(image_input, Image.Image):
        image = np.array(image_input)
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    elif isinstance(image_input, np.ndarray):
        if len(image_input.shape) == 3 and image_input.shape[2] == 3:
            image = cv2.cvtColor(image_input, cv2.COLOR_RGB2BGR)
        else:
            image = image_input.copy()
    else:
        raise ValueError("Input must be PIL Image or numpy array")

    if len(bboxes) == 0:
        return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    overlay = image.copy()
    cmap = colormap(N=len(id_to_names), normalized=False)

    for i in range(len(bboxes)):
        try:
            bbox = bboxes[i]
            if torch.is_tensor(bbox):
                bbox = bbox.cpu().numpy()
            
            class_id = classes[i]
            if torch.is_tensor(class_id):
                class_id = class_id.item()
            
            score = scores[i]
            if torch.is_tensor(score):
                score = score.item()
                
            x_min, y_min, x_max, y_max = map(int, bbox)
            class_id = int(class_id)
            class_name = id_to_names.get(class_id, f"unknown_{class_id}")

            color = tuple(int(c) for c in cmap[class_id % len(cmap)])

            # Draw filled rectangle on overlay
            cv2.rectangle(overlay, (x_min, y_min), (x_max, y_max), color, -1)
            # Draw border on main image
            cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, 3)

            # Add text label only if show_labels is True
            if show_labels:
                text = f"{class_name}: {score:.3f}"
                (text_width, text_height), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2)
                cv2.rectangle(image, (x_min, y_min - text_height - baseline - 4), 
                             (x_min + text_width + 8, y_min), color, -1)
                cv2.putText(image, text, (x_min + 4, y_min - 6), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)

        except Exception as e:
            print(f"Skipping box {i} due to error: {e}")

    # Apply transparency
    cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0, image)
    
    return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

def toggle_labels_visualization(show_labels, alpha):
    """Toggle labels without reprocessing the image."""
    global cached_results
    
    if cached_results is None:
        return None, "⚠️ No cached results. Please analyze an image first."
    
    input_img, boxes, labels, scores = cached_results
    
    output = visualize_bbox(input_img, boxes, labels, scores, classes_map, alpha=alpha, show_labels=show_labels)
    
    labels_status = "with labels" if show_labels else "without labels"
    info = f"βœ… Visualization updated ({labels_status}) | {len(boxes)} detections"
    
    return output, info

def process_image(input_img, model_name, conf_threshold, iou_threshold, nms_method, alpha, show_labels):
    """Process image with document layout detection."""
    global cached_results
    
    if input_img is None:
        return None, "❌ Please upload an image first."
    
    # Load model if needed
    if not load_model_if_needed(model_name):
        return None, f"❌ Failed to load model {model_name}."
        
    try:
        # Prepare image
        if isinstance(input_img, np.ndarray):
            input_img = Image.fromarray(input_img)
        
        if input_img.mode != 'RGB':
            input_img = input_img.convert('RGB')
        
        # Process with model
        inputs = current_processor(images=[input_img], return_tensors="pt")
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        with torch.no_grad():
            outputs = current_model(**inputs)
            
        # Post-process results
        results = current_processor.post_process_object_detection(
            outputs,
            target_sizes=torch.tensor([input_img.size[::-1]]),
            threshold=conf_threshold,
        )
        
        if not results or len(results) == 0:
            cached_results = None
            return np.array(input_img), "ℹ️ No detections found."
            
        result = results[0]
        boxes = result["boxes"]
        scores = result["scores"] 
        labels = result["labels"]
        
        if len(boxes) == 0:
            cached_results = None
            return np.array(input_img), f"ℹ️ No detections above threshold {conf_threshold:.2f}."
        
        # Apply NMS
        if iou_threshold < 1.0:
            if nms_method == "Custom IoMin":
                keep_indices = nms_custom(boxes=boxes, scores=scores, iou_threshold=iou_threshold)
            else:
                keep_indices = torchvision.ops.nms(boxes, scores, iou_threshold)
            
            boxes = boxes[keep_indices]
            scores = scores[keep_indices]
            labels = labels[keep_indices]
        
        # Cache results for label toggling
        cached_results = (input_img, boxes, labels, scores)
        
        # Visualize results
        output = visualize_bbox(input_img, boxes, labels, scores, classes_map, alpha=alpha, show_labels=show_labels)
        
        labels_status = "with labels" if show_labels else "without labels"
        info = f"βœ… Found {len(boxes)} detections ({labels_status}) | Model: {model_name} | NMS: {nms_method} | Conf: {conf_threshold:.2f}"
        
        return output, info
            
    except Exception as e:
        print(f"[ERROR] process_image failed: {e}")
        cached_results = None
        error_msg = f"❌ Processing error: {str(e)}"
        if input_img is not None:
            return np.array(input_img), error_msg
        return np.zeros((512, 512, 3), dtype=np.uint8), error_msg

if __name__ == "__main__":
    print(f"πŸš€ Starting Document Layout Analysis App")
    print(f"πŸ“± Device: {device}")
    print(f"πŸ€– Available models: {len(MODELS)}")
    
    # Custom CSS for clean layout
    custom_css = """
    .gradio-container {
        max-width: 100% !important;
        padding: 15px !important;
    }
    
    .control-panel {
        background: #f8f9fa;
        border-radius: 12px;
        border: 1px solid #e9ecef;
        padding: 20px;
        margin-bottom: 15px;
    }
    
    .results-panel {
        background: #f8f9fa;
        border-radius: 12px;
        border: 1px solid #e9ecef;
        padding: 20px;
        min-height: 600px;
    }
    """
    
    # Create Gradio interface
    with gr.Blocks(
        title="πŸ“„ Document Layout Analysis", 
        theme=gr.themes.Soft(),
        css=custom_css
    ) as demo:
        
        # Header
        gr.HTML("""
        <div style='text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 12px; margin-bottom: 20px;'>
            <h1 style='margin: 0; font-size: 2.5em;'>πŸ” Document Layout Analysis</h1>
            <p style='margin: 8px 0 0 0; font-size: 1.1em; opacity: 0.9;'>Advanced document structure detection with Docling models </p>
        </div>
        """)
        
        # Main content in two columns
        with gr.Row():
            # LEFT COLUMN - Controls (more compact)
            with gr.Column(scale=1):
                with gr.Group(elem_classes=["control-panel"]):
                    
                    # 1. Image Upload (first)
                    gr.HTML("<h3>πŸ“„ Upload Image</h3>")
                    input_img = gr.Image(
                        label="Document Image",
                        type="pil",
                        height=300,
                        interactive=True
                    )
                    
                    # gr.HTML("<br><h3>πŸ€– Model Selection</h3>")
                    # 2. Model Selection (second, without buttons)
                    model_dropdown = gr.Dropdown(
                        choices=list(MODELS.keys()),
                        value="Docling Layout Egret XLarge",
                        label="AI Model",
                        info="Model will be loaded automatically",
                        interactive=True
                    )
                    
                    # gr.HTML("<br><h3>βš™οΈ Parameters</h3>")
                    # 3. All parameters together (third)
                    with gr.Row():
                        conf_threshold = gr.Slider(
                            minimum=0.0, maximum=1.0, value=0.6, step=0.05,
                            label="Confidence", info="Detection threshold"
                        )
                        iou_threshold = gr.Slider(
                            minimum=0.0, maximum=1.0, value=0.5, step=0.05,
                            label="NMS IoU", info="Suppression threshold"
                        )
                    
                    with gr.Row():
                        nms_method = gr.Radio(
                            choices=["Standard IoU", "Custom IoMin"],
                            value="Standard IoU",
                            label="NMS Method", scale=2
                        )
                        alpha_slider = gr.Slider(
                            minimum=0.0, maximum=1.0, value=0.3, step=0.1,
                            label="Transparency", scale=1
                        )
                    
                    # gr.HTML("<br>")
                    # 4. Analyze button (last)
                    analyze_btn = gr.Button("πŸ” Analyze Document", variant="primary", size="lg")
            
            # RIGHT COLUMN - Results
            with gr.Column(scale=1):
                with gr.Group(elem_classes=["results-panel"]):
                    gr.HTML("<h3>🎯 Analysis Results</h3>")
                    
                    output_img = gr.Image(
                        label="Detected Layout",
                        type="numpy",
                        height=450,
                        interactive=False
                    )
                    
                    detection_info = gr.Textbox(
                        label="Detection Summary",
                        value="",
                        interactive=False,
                        lines=2,
                        placeholder="Results will appear here..."
                    )
                    
                    # Labels toggle (independent control)
                    # gr.HTML("<h4>🎨 Visualization</h4>")
                    show_labels_checkbox = gr.Checkbox(
                        value=True,
                        label="Show Class Labels",
                        info="Toggle labels without reprocessing",
                        interactive=True
                    )
        
        # Event Handlers
        
        # Main analysis (full processing)
        analyze_btn.click(
            fn=process_image,
            inputs=[input_img, model_dropdown, conf_threshold, iou_threshold, nms_method, alpha_slider, show_labels_checkbox],
            outputs=[output_img, detection_info]
        )
        
        # Independent label toggle (no reprocessing)
        show_labels_checkbox.change(
            fn=toggle_labels_visualization,
            inputs=[show_labels_checkbox, alpha_slider],
            outputs=[output_img, detection_info]
        )
        
        # Also update visualization when transparency changes (if we have cached results)
        alpha_slider.change(
            fn=toggle_labels_visualization,
            inputs=[show_labels_checkbox, alpha_slider],
            outputs=[output_img, detection_info]
        )
    
    # Launch application
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        debug=True,
        share=False,
        show_error=True,
        inbrowser=True
    )