Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| import random | |
| import gradio as gr | |
| import numpy as np | |
| import PIL.Image | |
| import spaces | |
| import torch | |
| from diffusers import UniDiffuserPipeline | |
| DESCRIPTION = "# [UniDiffuser](https://github.com/thu-ml/unidiffuser)" | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶</p>" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) # noqa: S311 | |
| return seed | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| if torch.cuda.is_available(): | |
| pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16) | |
| pipe.to(device) | |
| def run( # noqa: PLR0911 | |
| mode: str, | |
| prompt: str, | |
| image: PIL.Image.Image | None, | |
| seed: int = 0, | |
| num_steps: int = 20, | |
| guidance_scale: float = 8.0, | |
| ) -> tuple[PIL.Image.Image | None, str]: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| if image is not None: | |
| image = image.resize((512, 512)) | |
| if mode == "t2i": | |
| pipe.set_text_to_image_mode() | |
| sample = pipe(prompt=prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
| return sample.images[0], "" | |
| if mode == "i2t": | |
| pipe.set_image_to_text_mode() | |
| sample = pipe(image=image, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
| return None, sample.text[0] | |
| if mode == "joint": | |
| pipe.set_joint_mode() | |
| sample = pipe(num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
| return sample.images[0], sample.text[0] | |
| if mode == "i": | |
| pipe.set_image_mode() | |
| sample = pipe(num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
| return sample.images[0], "" | |
| if mode == "t": | |
| pipe.set_text_mode() | |
| sample = pipe(num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
| return None, sample.text[0] | |
| if mode == "i2t2i": | |
| pipe.set_image_to_text_mode() | |
| sample = pipe(image=image, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
| pipe.set_text_to_image_mode() | |
| sample = pipe( | |
| prompt=sample.text[0], | |
| num_inference_steps=num_steps, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| ) | |
| return sample.images[0], "" | |
| if mode == "t2i2t": | |
| pipe.set_text_to_image_mode() | |
| sample = pipe(prompt=prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
| pipe.set_image_to_text_mode() | |
| sample = pipe( | |
| image=sample.images[0], | |
| num_inference_steps=num_steps, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| ) | |
| return None, sample.text[0] | |
| raise ValueError | |
| def create_demo(mode_name: str) -> gr.Blocks: | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| mode = gr.Dropdown( | |
| label="Mode", | |
| choices=[ | |
| "t2i", | |
| "i2t", | |
| "joint", | |
| "i", | |
| "t", | |
| "i2t2i", | |
| "t2i2t", | |
| ], | |
| value=mode_name, | |
| visible=False, | |
| ) | |
| prompt = gr.Text(label="Prompt", max_lines=1, visible=mode_name in ["t2i", "t2i2t"]) | |
| image = gr.Image(label="Input image", type="pil", visible=mode_name in ["i2t", "i2t2i"]) | |
| run_button = gr.Button("Run") | |
| with gr.Accordion("Advanced options", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| num_steps = gr.Slider( | |
| label="Steps", | |
| minimum=1, | |
| maximum=100, | |
| value=20, | |
| step=1, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.1, | |
| maximum=30.0, | |
| value=8.0, | |
| step=0.1, | |
| ) | |
| with gr.Column(): | |
| result_image = gr.Image(label="Generated image", visible=mode_name in ["t2i", "i", "joint", "i2t2i"]) | |
| result_text = gr.Text(label="Generated text", visible=mode_name in ["i2t", "t", "joint", "t2i2t"]) | |
| gr.on( | |
| triggers=[prompt.submit, run_button.click], | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| api_name=False, | |
| concurrency_limit=None, | |
| ).then( | |
| fn=run, | |
| inputs=[ | |
| mode, | |
| prompt, | |
| image, | |
| seed, | |
| num_steps, | |
| guidance_scale, | |
| ], | |
| outputs=[ | |
| result_image, | |
| result_text, | |
| ], | |
| api_name=f"run_{mode_name}", | |
| concurrency_limit=1, | |
| concurrency_id="gpu", | |
| ) | |
| return demo | |
| with gr.Blocks(css_paths="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Tabs(): | |
| with gr.TabItem("text2image"): | |
| create_demo("t2i") | |
| with gr.TabItem("image2text"): | |
| create_demo("i2t") | |
| with gr.TabItem("image variation"): | |
| create_demo("i2t2i") | |
| with gr.TabItem("joint generation"): | |
| create_demo("joint") | |
| with gr.TabItem("image generation"): | |
| create_demo("i") | |
| with gr.TabItem("text generation"): | |
| create_demo("t") | |
| with gr.TabItem("text variation"): | |
| create_demo("t2i2t") | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() | |