Spaces:
Paused
Paused
Kastg
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException, Request
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
-
from llama_cpp import Llama
|
| 4 |
import gradio as gr
|
| 5 |
|
|
|
|
| 6 |
app = FastAPI()
|
| 7 |
|
|
|
|
| 8 |
llm = gr.Llama(model_path="model.gguf", n_ctx=4000, n_threads=2, chat_format="chatml")
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
@app.post("/api/v1/chat")
|
| 11 |
async def chat_post(request: Request):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
data = await request.json()
|
| 13 |
message = data.get("message")
|
| 14 |
history = data.get("history", [])
|
|
@@ -18,23 +40,31 @@ async def chat_post(request: Request):
|
|
| 18 |
async def generate():
|
| 19 |
system_prompt = "You are OpenChat, a useful AI assistant."
|
| 20 |
formatted_prompt = [{"role": "system", "content": system_prompt}]
|
| 21 |
-
for user_prompt, bot_response
|
| 22 |
formatted_prompt.append({"role": "user", "content": user_prompt})
|
| 23 |
-
formatted_prompt.append({"role": "assistant", "content": bot_response
|
| 24 |
formatted_prompt.append({"role": "user", "content": message})
|
| 25 |
-
stream_response = llm.create_chat_completion(messages=formatted_prompt, temperature=temperature,
|
| 26 |
-
|
|
|
|
| 27 |
for chunk in stream_response:
|
| 28 |
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
|
| 29 |
-
response
|
| 30 |
yield response
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
|
|
|
| 34 |
@app.get("/api/v1/chat")
|
| 35 |
async def chat_get():
|
| 36 |
return {"message": "Send a POST request to this endpoint to chat."}
|
| 37 |
|
|
|
|
| 38 |
if __name__ == "__main__":
|
| 39 |
import uvicorn
|
| 40 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
| 1 |
+
import discord
|
| 2 |
+
from discord.ext import commands
|
| 3 |
+
from discord.ext.commands import Context
|
| 4 |
from fastapi import FastAPI, HTTPException, Request
|
| 5 |
from fastapi.responses import JSONResponse
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
|
| 8 |
+
# Initialize FastAPI app
|
| 9 |
app = FastAPI()
|
| 10 |
|
| 11 |
+
# Initialize Gradio Llama model
|
| 12 |
llm = gr.Llama(model_path="model.gguf", n_ctx=4000, n_threads=2, chat_format="chatml")
|
| 13 |
|
| 14 |
+
# Initialize Discord bot
|
| 15 |
+
bot = commands.Bot(command_prefix='&') # Define the command prefix
|
| 16 |
+
|
| 17 |
+
# Global variable to store the channel where chats will be sent
|
| 18 |
+
chat_channel = None
|
| 19 |
+
|
| 20 |
+
# Define the command to set the chat channel
|
| 21 |
+
@bot.command()
|
| 22 |
+
async def set_channel(ctx: Context, channel: discord.TextChannel):
|
| 23 |
+
global chat_channel
|
| 24 |
+
chat_channel = channel
|
| 25 |
+
await ctx.send(f"Chat channel set to {channel.mention}")
|
| 26 |
+
|
| 27 |
+
# Define the function to handle the chat endpoint
|
| 28 |
@app.post("/api/v1/chat")
|
| 29 |
async def chat_post(request: Request):
|
| 30 |
+
global chat_channel
|
| 31 |
+
if chat_channel is None:
|
| 32 |
+
raise HTTPException(status_code=400, detail="Chat channel is not set")
|
| 33 |
+
|
| 34 |
data = await request.json()
|
| 35 |
message = data.get("message")
|
| 36 |
history = data.get("history", [])
|
|
|
|
| 40 |
async def generate():
|
| 41 |
system_prompt = "You are OpenChat, a useful AI assistant."
|
| 42 |
formatted_prompt = [{"role": "system", "content": system_prompt}]
|
| 43 |
+
for user_prompt, bot_response in history:
|
| 44 |
formatted_prompt.append({"role": "user", "content": user_prompt})
|
| 45 |
+
formatted_prompt.append({"role": "assistant", "content": bot_response})
|
| 46 |
formatted_prompt.append({"role": "user", "content": message})
|
| 47 |
+
stream_response = llm.create_chat_completion(messages=formatted_prompt, temperature=temperature,
|
| 48 |
+
max_tokens=max_tokens, stream=True)
|
| 49 |
+
response = ""
|
| 50 |
for chunk in stream_response:
|
| 51 |
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
|
| 52 |
+
response += chunk['choices'][0]["delta"]["content"]
|
| 53 |
yield response
|
| 54 |
|
| 55 |
+
# Send the generated response to the chat channel
|
| 56 |
+
async for response in generate():
|
| 57 |
+
await chat_channel.send(response)
|
| 58 |
+
|
| 59 |
+
return JSONResponse(content={"response": "Message sent to chat channel"})
|
| 60 |
|
| 61 |
+
# Define the function to handle the GET request for chat
|
| 62 |
@app.get("/api/v1/chat")
|
| 63 |
async def chat_get():
|
| 64 |
return {"message": "Send a POST request to this endpoint to chat."}
|
| 65 |
|
| 66 |
+
# Run the bot
|
| 67 |
if __name__ == "__main__":
|
| 68 |
import uvicorn
|
| 69 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 70 |
+
bot.run('YOUR_DISCORD_BOT_TOKEN') # Replace 'YOUR_DISCORD_BOT_TOKEN' with your actual bot token
|