renamed from app/utils.py
Browse files
app/utils.py → core/generation_utils.py
RENAMED
|
@@ -1,16 +1,9 @@
|
|
| 1 |
import json
|
| 2 |
-
import re
|
| 3 |
-
import sys
|
| 4 |
-
from turtle import color
|
| 5 |
from typing import Generator
|
| 6 |
-
from textwrap import dedent
|
| 7 |
-
from litellm.types.utils import ModelResponse
|
| 8 |
from pydantic import ValidationError
|
| 9 |
from core.llms.base_llm import BaseLLM
|
| 10 |
from core.prompts import cot
|
| 11 |
from core.types import ThoughtSteps, ThoughtStepsDisplay
|
| 12 |
-
from core.prompts import REVIEW_PROMPT, SYSTEM_PROMPT ,FINAL_ANSWER_PROMPT, HELPFUL_ASSISTANT_PROMPT
|
| 13 |
-
import os
|
| 14 |
import time
|
| 15 |
from core.utils import parse_with_fallback
|
| 16 |
from termcolor import colored
|
|
@@ -25,7 +18,7 @@ from tenacity import retry, stop_after_attempt, wait_incrementing
|
|
| 25 |
|
| 26 |
|
| 27 |
|
| 28 |
-
@retry(stop=stop_after_attempt(3), wait=wait_incrementing())
|
| 29 |
def cot_or_da_func(problem: str, llm: BaseLLM = None, **kwargs) -> COTorDAPromptOutput:
|
| 30 |
|
| 31 |
cot_decision_message = [
|
|
@@ -45,13 +38,6 @@ def cot_or_da_func(problem: str, llm: BaseLLM = None, **kwargs) -> COTorDAPrompt
|
|
| 45 |
return cot_or_da
|
| 46 |
|
| 47 |
|
| 48 |
-
def get_system_prompt(decision: Decision) -> str:
|
| 49 |
-
if decision == Decision.CHAIN_OF_THOUGHT:
|
| 50 |
-
return cot.SYSTEM_PROMPT
|
| 51 |
-
elif decision == Decision.DIRECT_ANSWER:
|
| 52 |
-
return HELPFUL_ASSISTANT_PROMPT
|
| 53 |
-
else:
|
| 54 |
-
raise ValueError(f"Invalid decision: {decision}")
|
| 55 |
|
| 56 |
def set_system_message(messages: list[dict], system_prompt: str) -> list[dict]:
|
| 57 |
#check if any system message already exists
|
|
@@ -75,7 +61,7 @@ def generate_answer(messages: list[dict], max_steps: int = 20, llm: BaseLLM = No
|
|
| 75 |
|
| 76 |
system_prompt += f" , {cot.SYSTEM_PROMPT_EXAMPLE_JSON}"
|
| 77 |
review_prompt += f" , {cot.REVIEW_PROMPT_EXAMPLE_JSON}"
|
| 78 |
-
final_answer_prompt += f" , {cot.
|
| 79 |
|
| 80 |
MESSAGES = set_system_message(messages, system_prompt)
|
| 81 |
|
|
@@ -99,12 +85,12 @@ def generate_answer(messages: list[dict], max_steps: int = 20, llm: BaseLLM = No
|
|
| 99 |
if thought.is_final_answer and not thought.next_step and not force_max_steps:
|
| 100 |
break
|
| 101 |
|
| 102 |
-
MESSAGES.append({"role": "user", "content": f"{
|
| 103 |
|
| 104 |
time.sleep(sleeptime)
|
| 105 |
|
| 106 |
# Get the final answer after all thoughts are processed
|
| 107 |
-
MESSAGES += [{"role": "user", "content": f"{final_answer_prompt}
|
| 108 |
|
| 109 |
raw_final_answers = llm.chat(messages=MESSAGES, **kwargs)
|
| 110 |
final_answer = raw_final_answers.choices[0].message.content
|
|
|
|
| 1 |
import json
|
|
|
|
|
|
|
|
|
|
| 2 |
from typing import Generator
|
|
|
|
|
|
|
| 3 |
from pydantic import ValidationError
|
| 4 |
from core.llms.base_llm import BaseLLM
|
| 5 |
from core.prompts import cot
|
| 6 |
from core.types import ThoughtSteps, ThoughtStepsDisplay
|
|
|
|
|
|
|
| 7 |
import time
|
| 8 |
from core.utils import parse_with_fallback
|
| 9 |
from termcolor import colored
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
|
| 21 |
+
@retry(stop=stop_after_attempt(3), wait=wait_incrementing(increment=1000))
|
| 22 |
def cot_or_da_func(problem: str, llm: BaseLLM = None, **kwargs) -> COTorDAPromptOutput:
|
| 23 |
|
| 24 |
cot_decision_message = [
|
|
|
|
| 38 |
return cot_or_da
|
| 39 |
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
def set_system_message(messages: list[dict], system_prompt: str) -> list[dict]:
|
| 43 |
#check if any system message already exists
|
|
|
|
| 61 |
|
| 62 |
system_prompt += f" , {cot.SYSTEM_PROMPT_EXAMPLE_JSON}"
|
| 63 |
review_prompt += f" , {cot.REVIEW_PROMPT_EXAMPLE_JSON}"
|
| 64 |
+
final_answer_prompt += f" , {cot.FINAL_ANSWER_EXAMPLE_JSON}"
|
| 65 |
|
| 66 |
MESSAGES = set_system_message(messages, system_prompt)
|
| 67 |
|
|
|
|
| 85 |
if thought.is_final_answer and not thought.next_step and not force_max_steps:
|
| 86 |
break
|
| 87 |
|
| 88 |
+
MESSAGES.append({"role": "user", "content": f"{review_prompt} {thought.critic}"})
|
| 89 |
|
| 90 |
time.sleep(sleeptime)
|
| 91 |
|
| 92 |
# Get the final answer after all thoughts are processed
|
| 93 |
+
MESSAGES += [{"role": "user", "content": f"{final_answer_prompt}"}]
|
| 94 |
|
| 95 |
raw_final_answers = llm.chat(messages=MESSAGES, **kwargs)
|
| 96 |
final_answer = raw_final_answers.choices[0].message.content
|