gets default prompt from cot or da func
Browse files- app/utils.py +17 -11
app/utils.py
CHANGED
|
@@ -19,15 +19,17 @@ from core.llms.litellm_llm import LLM
|
|
| 19 |
from core.llms.utils import user_message_with_images
|
| 20 |
from PIL import Image
|
| 21 |
from streamlit.runtime.uploaded_file_manager import UploadedFile
|
| 22 |
-
from core.prompts.decision_prompt import
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
|
| 26 |
|
|
|
|
| 27 |
def cot_or_da_func(problem: str, llm: BaseLLM = None, **kwargs) -> COTorDAPromptOutput:
|
| 28 |
|
| 29 |
cot_decision_message = [
|
| 30 |
-
{"role": "system", "content":
|
| 31 |
{"role": "user", "content": problem}]
|
| 32 |
|
| 33 |
raw_decision_response = llm.chat(messages=cot_decision_message, **kwargs)
|
|
@@ -37,10 +39,9 @@ def cot_or_da_func(problem: str, llm: BaseLLM = None, **kwargs) -> COTorDAPrompt
|
|
| 37 |
try:
|
| 38 |
decision = json.loads(decision_response)
|
| 39 |
cot_or_da = COTorDAPromptOutput(**decision)
|
| 40 |
-
except (json.JSONDecodeError, ValidationError, KeyError):
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
return cot_or_da
|
| 45 |
|
| 46 |
|
|
@@ -52,8 +53,7 @@ def get_system_prompt(decision: Decision) -> str:
|
|
| 52 |
else:
|
| 53 |
raise ValueError(f"Invalid decision: {decision}")
|
| 54 |
|
| 55 |
-
def set_system_message(messages: list[dict],
|
| 56 |
-
system_prompt = get_system_prompt(cot_or_da.decision)
|
| 57 |
#check if any system message already exists
|
| 58 |
if any(message['role'] == 'system' for message in messages):
|
| 59 |
for i, message in enumerate(messages):
|
|
@@ -71,7 +71,13 @@ def generate_answer(messages: list[dict], max_steps: int = 20, llm: BaseLLM = No
|
|
| 71 |
cot_or_da = cot_or_da_func(user_message, llm=llm, **kwargs)
|
| 72 |
print(colored(f"LLM Decision: {cot_or_da.decision} - Justification: {cot_or_da.reasoning}", 'magenta'))
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
|
| 77 |
if cot_or_da.decision == Decision.CHAIN_OF_THOUGHT:
|
|
@@ -93,12 +99,12 @@ def generate_answer(messages: list[dict], max_steps: int = 20, llm: BaseLLM = No
|
|
| 93 |
if thought.is_final_answer and not thought.next_step and not force_max_steps:
|
| 94 |
break
|
| 95 |
|
| 96 |
-
MESSAGES.append({"role": "user", "content": cot.
|
| 97 |
|
| 98 |
time.sleep(sleeptime)
|
| 99 |
|
| 100 |
# Get the final answer after all thoughts are processed
|
| 101 |
-
MESSAGES += [{"role": "user", "content": cot.FINAL_ANSWER_PROMPT}]
|
| 102 |
|
| 103 |
raw_final_answers = llm.chat(messages=MESSAGES, **kwargs)
|
| 104 |
final_answer = raw_final_answers.choices[0].message.content
|
|
|
|
| 19 |
from core.llms.utils import user_message_with_images
|
| 20 |
from PIL import Image
|
| 21 |
from streamlit.runtime.uploaded_file_manager import UploadedFile
|
| 22 |
+
from core.prompts.decision_prompt import PLAN_SYSTEM_PROMPT, COTorDAPromptOutput, Decision
|
| 23 |
+
from tenacity import retry, stop_after_attempt, wait_random_exponential
|
| 24 |
|
| 25 |
|
| 26 |
|
| 27 |
|
| 28 |
+
@retry(stop=stop_after_attempt(3))
|
| 29 |
def cot_or_da_func(problem: str, llm: BaseLLM = None, **kwargs) -> COTorDAPromptOutput:
|
| 30 |
|
| 31 |
cot_decision_message = [
|
| 32 |
+
{"role": "system", "content": PLAN_SYSTEM_PROMPT},
|
| 33 |
{"role": "user", "content": problem}]
|
| 34 |
|
| 35 |
raw_decision_response = llm.chat(messages=cot_decision_message, **kwargs)
|
|
|
|
| 39 |
try:
|
| 40 |
decision = json.loads(decision_response)
|
| 41 |
cot_or_da = COTorDAPromptOutput(**decision)
|
| 42 |
+
except (json.JSONDecodeError, ValidationError, KeyError) as e:
|
| 43 |
+
raise e
|
| 44 |
+
|
|
|
|
| 45 |
return cot_or_da
|
| 46 |
|
| 47 |
|
|
|
|
| 53 |
else:
|
| 54 |
raise ValueError(f"Invalid decision: {decision}")
|
| 55 |
|
| 56 |
+
def set_system_message(messages: list[dict], system_prompt: str) -> list[dict]:
|
|
|
|
| 57 |
#check if any system message already exists
|
| 58 |
if any(message['role'] == 'system' for message in messages):
|
| 59 |
for i, message in enumerate(messages):
|
|
|
|
| 71 |
cot_or_da = cot_or_da_func(user_message, llm=llm, **kwargs)
|
| 72 |
print(colored(f"LLM Decision: {cot_or_da.decision} - Justification: {cot_or_da.reasoning}", 'magenta'))
|
| 73 |
|
| 74 |
+
system_prompt, review_prompt, final_answer_prompt = cot_or_da.prompts.system_prompt, cot_or_da.prompts.review_prompt, cot_or_da.prompts.final_answer_prompt
|
| 75 |
+
|
| 76 |
+
system_prompt += f" , {cot.SYSTEM_PROMPT_EXAMPLE_JSON}"
|
| 77 |
+
review_prompt += f" , {cot.REVIEW_PROMPT_EXAMPLE_JSON}"
|
| 78 |
+
final_answer_prompt += f" , {cot.FINAL_ANSWER_PROMPT}"
|
| 79 |
+
|
| 80 |
+
MESSAGES = set_system_message(messages, system_prompt)
|
| 81 |
|
| 82 |
|
| 83 |
if cot_or_da.decision == Decision.CHAIN_OF_THOUGHT:
|
|
|
|
| 99 |
if thought.is_final_answer and not thought.next_step and not force_max_steps:
|
| 100 |
break
|
| 101 |
|
| 102 |
+
MESSAGES.append({"role": "user", "content": f"{thought.critic} {review_prompt} {cot.REVIEW_PROMPT_EXAMPLE_JSON}"})
|
| 103 |
|
| 104 |
time.sleep(sleeptime)
|
| 105 |
|
| 106 |
# Get the final answer after all thoughts are processed
|
| 107 |
+
MESSAGES += [{"role": "user", "content": f"{final_answer_prompt} {cot.FINAL_ANSWER_PROMPT}"}]
|
| 108 |
|
| 109 |
raw_final_answers = llm.chat(messages=MESSAGES, **kwargs)
|
| 110 |
final_answer = raw_final_answers.choices[0].message.content
|