Spaces:
Sleeping
Sleeping
| from dataclasses import dataclass, make_dataclass | |
| from enum import Enum | |
| import json | |
| import logging | |
| from datetime import datetime | |
| import pandas as pd | |
| # Configure logging | |
| logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
| # Convert ISO 8601 dates to datetime objects for comparison | |
| def parse_iso8601_datetime(date_str): | |
| if date_str.endswith('Z'): | |
| date_str = date_str[:-1] + '+00:00' | |
| return datetime.fromisoformat(date_str) | |
| def parse_datetime(datetime_str): | |
| formats = [ | |
| "%Y-%m-%dT%H-%M-%S.%f", # Format with dashes | |
| "%Y-%m-%dT%H:%M:%S.%f", # Standard format with colons | |
| "%Y-%m-%dT%H %M %S.%f", # Spaces as separator | |
| ] | |
| for fmt in formats: | |
| try: | |
| return datetime.strptime(datetime_str, fmt) | |
| except ValueError: | |
| continue | |
| # in rare cases set unix start time for files with incorrect time (legacy files) | |
| logging.error(f"No valid date format found for: {datetime_str}") | |
| return datetime(1970, 1, 1) | |
| def load_json_data(file_path): | |
| """Safely load JSON data from a file.""" | |
| try: | |
| with open(file_path, "r") as file: | |
| return json.load(file) | |
| except json.JSONDecodeError: | |
| print(f"Error reading JSON from {file_path}") | |
| return None # Or raise an exception | |
| def fields(raw_class): | |
| return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
| column_map = { | |
| "T": "T", | |
| "model": "Model", | |
| "type": "Model Type", | |
| "size_range": "Size Range", | |
| "complete": "Complete", | |
| "instruct": "Instruct", | |
| "average": "Average", | |
| "elo_mle": "Elo Rating", | |
| "link": "Link", | |
| "act_param": "#Act Params (B)", | |
| "size": "#Params (B)", | |
| "moe": "MoE", | |
| # "lazy": "Lazy", | |
| "openness": "Openness", | |
| # "direct_complete": "Direct Completion", | |
| } | |
| type_map = { | |
| "🔶": "🔶 Chat Models (RLHF, DPO, IFT, ...)", | |
| "🟢": "🟢 Base Models" | |
| } | |
| moe_map = { | |
| True: "MoE", | |
| False: "Dense" | |
| } | |
| # These classes are for user facing column names, | |
| # to avoid having to change them all around the code | |
| # when a modif is needed | |
| class ColumnContent: | |
| name: str | |
| type: str | |
| displayed_by_default: bool | |
| hidden: bool = False | |
| never_hidden: bool = False | |
| dummy: bool = False | |
| auto_eval_column_dict = [] | |
| # Init | |
| auto_eval_column_dict.append(["T", ColumnContent, ColumnContent(column_map["T"], "str", True, never_hidden=True)]) | |
| auto_eval_column_dict.append(["model", ColumnContent, ColumnContent(column_map["model"], "markdown", True, never_hidden=True)]) | |
| auto_eval_column_dict.append(["type", ColumnContent, ColumnContent(column_map["type"], "str", False, True)]) | |
| auto_eval_column_dict.append(["size_range", ColumnContent, ColumnContent(column_map["size_range"], "str", False, True)]) | |
| # Scores | |
| auto_eval_column_dict.append(["complete", ColumnContent, ColumnContent(column_map["complete"], "number", True)]) | |
| auto_eval_column_dict.append(["instruct", ColumnContent, ColumnContent(column_map["instruct"], "number", True)]) | |
| auto_eval_column_dict.append(["average", ColumnContent, ColumnContent(column_map["average"], "number", True)]) | |
| auto_eval_column_dict.append(["elo_mle", ColumnContent, ColumnContent(column_map["elo_mle"], "number", True)]) | |
| # Model information | |
| auto_eval_column_dict.append(["act_param", ColumnContent, ColumnContent(column_map["act_param"], "number", True)]) | |
| auto_eval_column_dict.append(["link", ColumnContent, ColumnContent(column_map["link"], "str", False, True)]) | |
| auto_eval_column_dict.append(["size", ColumnContent, ColumnContent(column_map["size"], "number", False)]) | |
| # auto_eval_column_dict.append(["lazy", ColumnContent, ColumnContent(column_map["lazy"], "bool", False, True)]) | |
| auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent(column_map["moe"], "str", False, True)]) | |
| auto_eval_column_dict.append(["openness", ColumnContent, ColumnContent(column_map["openness"], "str", False, True)]) | |
| # auto_eval_column_dict.append(["direct_complete", ColumnContent, ColumnContent(column_map["direct_complete"], "bool", False)]) | |
| # We use make dataclass to dynamically fill the scores from Tasks | |
| AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
| class EvalQueueColumn: # Queue column | |
| model_link = ColumnContent("link", "markdown", True) | |
| model_name = ColumnContent("model", "str", True) | |
| class ModelDetails: | |
| name: str | |
| symbol: str = "" # emoji, only for the model type | |
| # Column selection | |
| COLS = [c.name for c in fields(AutoEvalColumn)] | |
| TYPES = [c.type for c in fields(AutoEvalColumn)] | |
| EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
| EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
| NUMERIC_INTERVALS = { | |
| "?": pd.Interval(-1, 0, closed="right"), | |
| "~1.5": pd.Interval(0, 2, closed="right"), | |
| "~3": pd.Interval(2, 4, closed="right"), | |
| "~7": pd.Interval(4, 9, closed="right"), | |
| "~13": pd.Interval(9, 20, closed="right"), | |
| "~35": pd.Interval(20, 45, closed="right"), | |
| "~60": pd.Interval(45, 70, closed="right"), | |
| "70+": pd.Interval(70, 10000, closed="right"), | |
| } | |