Spaces:
Build error
Build error
| import torch | |
| import torch.nn as nn | |
| class FrequencyPositionalEmbedding(nn.Module): | |
| """The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts | |
| each feature dimension of `x[..., i]` into: | |
| [ | |
| sin(x[..., i]), | |
| sin(f_1*x[..., i]), | |
| sin(f_2*x[..., i]), | |
| ... | |
| sin(f_N * x[..., i]), | |
| cos(x[..., i]), | |
| cos(f_1*x[..., i]), | |
| cos(f_2*x[..., i]), | |
| ... | |
| cos(f_N * x[..., i]), | |
| x[..., i] # only present if include_input is True. | |
| ], here f_i is the frequency. | |
| Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs]. | |
| If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...]; | |
| Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]. | |
| Args: | |
| num_freqs (int): the number of frequencies, default is 6; | |
| logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], | |
| otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]; | |
| input_dim (int): the input dimension, default is 3; | |
| include_input (bool): include the input tensor or not, default is True. | |
| Attributes: | |
| frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], | |
| otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1); | |
| out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1), | |
| otherwise, it is input_dim * num_freqs * 2. | |
| """ | |
| def __init__( | |
| self, | |
| num_freqs: int = 6, | |
| logspace: bool = True, | |
| input_dim: int = 3, | |
| include_input: bool = True, | |
| include_pi: bool = True, | |
| ) -> None: | |
| """The initialization""" | |
| super().__init__() | |
| if logspace: | |
| frequencies = 2.0 ** torch.arange(num_freqs, dtype=torch.float32) | |
| else: | |
| frequencies = torch.linspace( | |
| 1.0, 2.0 ** (num_freqs - 1), num_freqs, dtype=torch.float32 | |
| ) | |
| if include_pi: | |
| frequencies *= torch.pi | |
| self.register_buffer("frequencies", frequencies, persistent=False) | |
| self.include_input = include_input | |
| self.num_freqs = num_freqs | |
| self.out_dim = self.get_dims(input_dim) | |
| def get_dims(self, input_dim): | |
| temp = 1 if self.include_input or self.num_freqs == 0 else 0 | |
| out_dim = input_dim * (self.num_freqs * 2 + temp) | |
| return out_dim | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """Forward process. | |
| Args: | |
| x: tensor of shape [..., dim] | |
| Returns: | |
| embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)] | |
| where temp is 1 if include_input is True and 0 otherwise. | |
| """ | |
| if self.num_freqs > 0: | |
| embed = (x[..., None].contiguous() * self.frequencies).view( | |
| *x.shape[:-1], -1 | |
| ) | |
| if self.include_input: | |
| return torch.cat((x, embed.sin(), embed.cos()), dim=-1) | |
| else: | |
| return torch.cat((embed.sin(), embed.cos()), dim=-1) | |
| else: | |
| return x | |