Spaces:
Build error
Build error
| import inspect | |
| import math | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL | |
| import PIL.Image | |
| import torch | |
| import trimesh | |
| from diffusers.image_processor import PipelineImageInput | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils import logging | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from transformers import ( | |
| BitImageProcessor, | |
| Dinov2Model, | |
| ) | |
| from ..utils.inference_utils import hierarchical_extract_geometry, flash_extract_geometry | |
| from ..models.autoencoders import TripoSGVAEModel | |
| from ..models.transformers import PartCrafterDiTModel | |
| from .pipeline_partcrafter_output import PartCrafterPipelineOutput | |
| from .pipeline_utils import TransformerDiffusionMixin | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError( | |
| "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" | |
| ) | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys() | |
| ) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys() | |
| ) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class PartCrafterPipeline(DiffusionPipeline, TransformerDiffusionMixin): | |
| """ | |
| Pipeline for image to 3D part-level object generation. | |
| """ | |
| def __init__( | |
| self, | |
| vae: TripoSGVAEModel, | |
| transformer: PartCrafterDiTModel, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| image_encoder_dinov2: Dinov2Model, | |
| feature_extractor_dinov2: BitImageProcessor, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| image_encoder_dinov2=image_encoder_dinov2, | |
| feature_extractor_dinov2=feature_extractor_dinov2, | |
| ) | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def attention_kwargs(self): | |
| return self._attention_kwargs | |
| def interrupt(self): | |
| return self._interrupt | |
| def decode_progressive(self): | |
| return self._decode_progressive | |
| def encode_image(self, image, device, num_images_per_prompt): | |
| dtype = next(self.image_encoder_dinov2.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor_dinov2(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeds = self.image_encoder_dinov2(image).last_hidden_state | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_embeds = torch.zeros_like(image_embeds) | |
| return image_embeds, uncond_image_embeds | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_tokens, | |
| num_channels_latents, | |
| dtype, | |
| device, | |
| generator, | |
| latents: Optional[torch.Tensor] = None, | |
| ): | |
| shape = (batch_size, num_tokens, num_channels_latents) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| return noise | |
| def __call__( | |
| self, | |
| image: PipelineImageInput, | |
| num_inference_steps: int = 50, | |
| num_tokens: int = 2048, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 7.0, | |
| num_images_per_prompt: int = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| bounds: Union[Tuple[float], List[float], float] = (-1.005, -1.005, -1.005, 1.005, 1.005, 1.005), | |
| dense_octree_depth: int = 8, | |
| hierarchical_octree_depth: int = 9, | |
| max_num_expanded_coords: int = 1e8, | |
| flash_octree_depth: int = 9, | |
| use_flash_decoder: bool = True, | |
| return_dict: bool = True, | |
| ): | |
| # 1. Define call parameters | |
| self._guidance_scale = guidance_scale | |
| self._attention_kwargs = attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if isinstance(image, PIL.Image.Image): | |
| batch_size = 1 | |
| elif isinstance(image, list): | |
| batch_size = len(image) | |
| elif isinstance(image, torch.Tensor): | |
| batch_size = image.shape[0] | |
| else: | |
| raise ValueError("Invalid input type for image") | |
| device = self._execution_device | |
| dtype = self.image_encoder_dinov2.dtype | |
| # 3. Encode condition | |
| image_embeds, negative_image_embeds = self.encode_image( | |
| image, device, num_images_per_prompt | |
| ) | |
| if self.do_classifier_free_guidance: | |
| image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, timesteps | |
| ) | |
| num_warmup_steps = max( | |
| len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_tokens, | |
| num_channels_latents, | |
| image_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Denoising loop | |
| self.set_progress_bar_config( | |
| desc="Denoising", | |
| ncols=125, | |
| disable=self._progress_bar_config['disable'] if hasattr(self, '_progress_bar_config') else False, | |
| ) | |
| with self.progress_bar(total=len(timesteps)) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) | |
| if self.do_classifier_free_guidance | |
| else latents | |
| ) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| noise_pred = self.transformer( | |
| latent_model_input, | |
| timestep, | |
| encoder_hidden_states=image_embeds, | |
| attention_kwargs=attention_kwargs, | |
| return_dict=False, | |
| )[0].to(dtype) | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_image = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
| noise_pred_image - noise_pred_uncond | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, return_dict=False | |
| )[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| image_embeds_1 = callback_outputs.pop( | |
| "image_embeds_1", image_embeds_1 | |
| ) | |
| negative_image_embeds_1 = callback_outputs.pop( | |
| "negative_image_embeds_1", negative_image_embeds_1 | |
| ) | |
| image_embeds_2 = callback_outputs.pop( | |
| "image_embeds_2", image_embeds_2 | |
| ) | |
| negative_image_embeds_2 = callback_outputs.pop( | |
| "negative_image_embeds_2", negative_image_embeds_2 | |
| ) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| # 7. decoder mesh | |
| self.vae.set_flash_decoder() | |
| output, meshes = [], [] | |
| self.set_progress_bar_config( | |
| desc="Decoding", | |
| ncols=125, | |
| disable=self._progress_bar_config['disable'] if hasattr(self, '_progress_bar_config') else False, | |
| ) | |
| with self.progress_bar(total=batch_size) as progress_bar: | |
| for i in range(batch_size): | |
| geometric_func = lambda x: self.vae.decode(latents[i].unsqueeze(0), sampled_points=x).sample | |
| try: | |
| mesh_v_f = hierarchical_extract_geometry( | |
| geometric_func, | |
| device, | |
| dtype=latents.dtype, | |
| bounds=bounds, | |
| dense_octree_depth=dense_octree_depth, | |
| hierarchical_octree_depth=hierarchical_octree_depth, | |
| max_num_expanded_coords=max_num_expanded_coords, | |
| # verbose=True | |
| ) | |
| mesh = trimesh.Trimesh(mesh_v_f[0].astype(np.float32), mesh_v_f[1]) | |
| except: | |
| mesh_v_f = None | |
| mesh = None | |
| output.append(mesh_v_f) | |
| meshes.append(mesh) | |
| progress_bar.update() | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (output, meshes) | |
| return PartCrafterPipelineOutput(samples=output, meshes=meshes) | |