Spaces:
Runtime error
Runtime error
style
Browse files- dalle_mini/model/__init__.py +1 -1
- dalle_mini/model/configuration.py +20 -7
- dalle_mini/model/modeling.py +126 -49
- dalle_mini/model/partitions.py +0 -1
dalle_mini/model/__init__.py
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
from .configuration import DalleBartConfig
|
| 2 |
-
from .modeling import DalleBartForConditionalGeneration
|
|
|
|
| 1 |
from .configuration import DalleBartConfig
|
| 2 |
+
from .modeling import DalleBartForConditionalGeneration
|
dalle_mini/model/configuration.py
CHANGED
|
@@ -18,7 +18,6 @@ import warnings
|
|
| 18 |
from transformers.configuration_utils import PretrainedConfig
|
| 19 |
from transformers.utils import logging
|
| 20 |
|
| 21 |
-
|
| 22 |
logger = logging.get_logger(__name__)
|
| 23 |
|
| 24 |
|
|
@@ -88,7 +87,10 @@ class DalleBartConfig(PretrainedConfig):
|
|
| 88 |
"""
|
| 89 |
model_type = "dallebart"
|
| 90 |
keys_to_ignore_at_inference = ["past_key_values"]
|
| 91 |
-
attribute_map = {
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
def __init__(
|
| 94 |
self,
|
|
@@ -118,7 +120,7 @@ class DalleBartConfig(PretrainedConfig):
|
|
| 118 |
num_labels=3,
|
| 119 |
is_encoder_decoder=True,
|
| 120 |
forced_eos_token_id=None,
|
| 121 |
-
tie_word_embeddings=False,
|
| 122 |
**kwargs,
|
| 123 |
):
|
| 124 |
self.normalize_text = normalize_text
|
|
@@ -144,18 +146,27 @@ class DalleBartConfig(PretrainedConfig):
|
|
| 144 |
self.use_cache = use_cache
|
| 145 |
self.num_hidden_layers = encoder_layers
|
| 146 |
self.gradient_checkpointing = gradient_checkpointing
|
| 147 |
-
self.scale_embedding =
|
|
|
|
|
|
|
| 148 |
self.decoder_start_token_id = image_vocab_size # BOS appended to vocab
|
| 149 |
self.min_length = image_length + 1
|
| 150 |
self.max_length = image_length + 1
|
| 151 |
|
| 152 |
# remove keys we are about to set to prevent errors
|
| 153 |
-
for k in [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
kwargs.pop(k, None)
|
| 155 |
|
| 156 |
super().__init__(
|
| 157 |
num_labels=num_labels,
|
| 158 |
-
pad_token_id=image_vocab_size
|
|
|
|
| 159 |
bos_token_id=image_vocab_size + 1, # set to unreachable values
|
| 160 |
eos_token_id=image_vocab_size + 1,
|
| 161 |
is_encoder_decoder=is_encoder_decoder,
|
|
@@ -166,7 +177,9 @@ class DalleBartConfig(PretrainedConfig):
|
|
| 166 |
)
|
| 167 |
|
| 168 |
# ensure backward compatibility for BART CNN models
|
| 169 |
-
if self.forced_bos_token_id is None and kwargs.get(
|
|
|
|
|
|
|
| 170 |
self.forced_bos_token_id = self.bos_token_id
|
| 171 |
warnings.warn(
|
| 172 |
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions."
|
|
|
|
| 18 |
from transformers.configuration_utils import PretrainedConfig
|
| 19 |
from transformers.utils import logging
|
| 20 |
|
|
|
|
| 21 |
logger = logging.get_logger(__name__)
|
| 22 |
|
| 23 |
|
|
|
|
| 87 |
"""
|
| 88 |
model_type = "dallebart"
|
| 89 |
keys_to_ignore_at_inference = ["past_key_values"]
|
| 90 |
+
attribute_map = {
|
| 91 |
+
"num_attention_heads": "encoder_attention_heads",
|
| 92 |
+
"hidden_size": "d_model",
|
| 93 |
+
}
|
| 94 |
|
| 95 |
def __init__(
|
| 96 |
self,
|
|
|
|
| 120 |
num_labels=3,
|
| 121 |
is_encoder_decoder=True,
|
| 122 |
forced_eos_token_id=None,
|
| 123 |
+
tie_word_embeddings=False, # don't tie for scaling reasons and due to different modalities and sizes
|
| 124 |
**kwargs,
|
| 125 |
):
|
| 126 |
self.normalize_text = normalize_text
|
|
|
|
| 146 |
self.use_cache = use_cache
|
| 147 |
self.num_hidden_layers = encoder_layers
|
| 148 |
self.gradient_checkpointing = gradient_checkpointing
|
| 149 |
+
self.scale_embedding = (
|
| 150 |
+
scale_embedding # scale factor will be sqrt(d_model) if True
|
| 151 |
+
)
|
| 152 |
self.decoder_start_token_id = image_vocab_size # BOS appended to vocab
|
| 153 |
self.min_length = image_length + 1
|
| 154 |
self.max_length = image_length + 1
|
| 155 |
|
| 156 |
# remove keys we are about to set to prevent errors
|
| 157 |
+
for k in [
|
| 158 |
+
"bos_token_id",
|
| 159 |
+
"eos_token_id",
|
| 160 |
+
"pad_token_id",
|
| 161 |
+
"decoder_start_token_id",
|
| 162 |
+
"forced_eos_token_id",
|
| 163 |
+
]:
|
| 164 |
kwargs.pop(k, None)
|
| 165 |
|
| 166 |
super().__init__(
|
| 167 |
num_labels=num_labels,
|
| 168 |
+
pad_token_id=image_vocab_size
|
| 169 |
+
+ 1, # needed to avoid errors during generation (converted to jnp.array)
|
| 170 |
bos_token_id=image_vocab_size + 1, # set to unreachable values
|
| 171 |
eos_token_id=image_vocab_size + 1,
|
| 172 |
is_encoder_decoder=is_encoder_decoder,
|
|
|
|
| 177 |
)
|
| 178 |
|
| 179 |
# ensure backward compatibility for BART CNN models
|
| 180 |
+
if self.forced_bos_token_id is None and kwargs.get(
|
| 181 |
+
"force_bos_token_to_be_generated", False
|
| 182 |
+
):
|
| 183 |
self.forced_bos_token_id = self.bos_token_id
|
| 184 |
warnings.warn(
|
| 185 |
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions."
|
dalle_mini/model/modeling.py
CHANGED
|
@@ -18,19 +18,16 @@ import math
|
|
| 18 |
from functools import partial
|
| 19 |
from typing import Callable, Optional, Tuple
|
| 20 |
|
| 21 |
-
import numpy as np
|
| 22 |
-
|
| 23 |
import flax.linen as nn
|
| 24 |
import jax
|
| 25 |
import jax.numpy as jnp
|
|
|
|
| 26 |
from flax.core.frozen_dict import FrozenDict, unfreeze
|
| 27 |
-
from flax.traverse_util import flatten_dict
|
| 28 |
from flax.linen import combine_masks, make_causal_mask
|
| 29 |
from flax.linen.attention import dot_product_attention_weights
|
|
|
|
| 30 |
from jax import lax
|
| 31 |
from jax.random import PRNGKey
|
| 32 |
-
|
| 33 |
-
|
| 34 |
from transformers.modeling_flax_outputs import (
|
| 35 |
FlaxBaseModelOutput,
|
| 36 |
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
|
@@ -38,20 +35,17 @@ from transformers.modeling_flax_outputs import (
|
|
| 38 |
FlaxSeq2SeqLMOutput,
|
| 39 |
FlaxSeq2SeqModelOutput,
|
| 40 |
)
|
| 41 |
-
from transformers.modeling_flax_utils import
|
| 42 |
-
ACT2FN,
|
| 43 |
-
FlaxPreTrainedModel,
|
| 44 |
-
)
|
| 45 |
from transformers.utils import logging
|
| 46 |
|
| 47 |
-
|
| 48 |
from .configuration import DalleBartConfig
|
| 49 |
|
| 50 |
-
|
| 51 |
logger = logging.get_logger(__name__)
|
| 52 |
|
| 53 |
|
| 54 |
-
def shift_tokens_right(
|
|
|
|
|
|
|
| 55 |
"""
|
| 56 |
Shift input ids one token to the right.
|
| 57 |
"""
|
|
@@ -59,7 +53,9 @@ def shift_tokens_right(input_ids: np.array, pad_token_id: int, decoder_start_tok
|
|
| 59 |
shifted_input_ids[:, 1:] = input_ids[:, :-1]
|
| 60 |
shifted_input_ids[:, 0] = decoder_start_token_id
|
| 61 |
|
| 62 |
-
shifted_input_ids = np.where(
|
|
|
|
|
|
|
| 63 |
return shifted_input_ids
|
| 64 |
|
| 65 |
|
|
@@ -97,7 +93,9 @@ class FlaxBartAttention(nn.Module):
|
|
| 97 |
)
|
| 98 |
|
| 99 |
def _split_heads(self, hidden_states):
|
| 100 |
-
return hidden_states.reshape(
|
|
|
|
|
|
|
| 101 |
|
| 102 |
def _merge_heads(self, hidden_states):
|
| 103 |
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
|
@@ -111,9 +109,15 @@ class FlaxBartAttention(nn.Module):
|
|
| 111 |
"""
|
| 112 |
# detect if we're initializing by absence of existing cache data.
|
| 113 |
is_initialized = self.has_variable("cache", "cached_key")
|
| 114 |
-
cached_key = self.variable(
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
if is_initialized:
|
| 119 |
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
|
@@ -172,15 +176,21 @@ class FlaxBartAttention(nn.Module):
|
|
| 172 |
mask_shift = self.variables["cache"]["cache_index"]
|
| 173 |
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
| 174 |
causal_mask = lax.dynamic_slice(
|
| 175 |
-
self.causal_mask,
|
|
|
|
|
|
|
| 176 |
)
|
| 177 |
else:
|
| 178 |
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
| 179 |
-
causal_mask = jnp.broadcast_to(
|
|
|
|
|
|
|
| 180 |
|
| 181 |
# combine masks if needed
|
| 182 |
if self.causal:
|
| 183 |
-
attention_mask = jnp.broadcast_to(
|
|
|
|
|
|
|
| 184 |
attention_mask = combine_masks(attention_mask, causal_mask)
|
| 185 |
else:
|
| 186 |
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
|
@@ -261,7 +271,9 @@ class FlaxBartEncoderLayer(nn.Module):
|
|
| 261 |
deterministic: bool = True,
|
| 262 |
) -> Tuple[jnp.ndarray]:
|
| 263 |
residual = hidden_states
|
| 264 |
-
hidden_states = self.self_attn(
|
|
|
|
|
|
|
| 265 |
|
| 266 |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 267 |
hidden_states = residual + hidden_states
|
|
@@ -269,7 +281,9 @@ class FlaxBartEncoderLayer(nn.Module):
|
|
| 269 |
|
| 270 |
residual = hidden_states
|
| 271 |
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
| 272 |
-
hidden_states = self.activation_dropout_layer(
|
|
|
|
|
|
|
| 273 |
hidden_states = self.fc2(hidden_states)
|
| 274 |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 275 |
hidden_states = residual + hidden_states
|
|
@@ -283,9 +297,14 @@ class FlaxBartEncoderLayerCollection(nn.Module):
|
|
| 283 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
| 284 |
|
| 285 |
def setup(self):
|
| 286 |
-
layer_module =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
self.layers = [
|
| 288 |
-
layer_module(self.config, name=str(i), dtype=self.dtype)
|
|
|
|
| 289 |
]
|
| 290 |
|
| 291 |
def __call__(
|
|
@@ -359,7 +378,9 @@ class FlaxBartDecoderLayer(nn.Module):
|
|
| 359 |
|
| 360 |
# Self Attention
|
| 361 |
hidden_states = self.self_attn(
|
| 362 |
-
hidden_states=hidden_states,
|
|
|
|
|
|
|
| 363 |
)
|
| 364 |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 365 |
hidden_states = residual + hidden_states
|
|
@@ -380,7 +401,9 @@ class FlaxBartDecoderLayer(nn.Module):
|
|
| 380 |
# Fully Connected
|
| 381 |
residual = hidden_states
|
| 382 |
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
| 383 |
-
hidden_states = self.activation_dropout_layer(
|
|
|
|
|
|
|
| 384 |
hidden_states = self.fc2(hidden_states)
|
| 385 |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 386 |
hidden_states = residual + hidden_states
|
|
@@ -394,9 +417,14 @@ class FlaxBartDecoderLayerCollection(nn.Module):
|
|
| 394 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
| 395 |
|
| 396 |
def setup(self):
|
| 397 |
-
layer_module =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
self.layers = [
|
| 399 |
-
layer_module(self.config, name=str(i), dtype=self.dtype)
|
|
|
|
| 400 |
]
|
| 401 |
|
| 402 |
def __call__(
|
|
@@ -419,7 +447,9 @@ class FlaxBartDecoderLayerCollection(nn.Module):
|
|
| 419 |
deterministic=deterministic,
|
| 420 |
)
|
| 421 |
|
| 422 |
-
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
|
|
|
|
|
|
| 423 |
|
| 424 |
|
| 425 |
class DalleBartEncoder(nn.Module):
|
|
@@ -470,7 +500,9 @@ class DalleBartEncoder(nn.Module):
|
|
| 470 |
hidden_states = self.layernorm_embedding(hidden_states)
|
| 471 |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 472 |
|
| 473 |
-
outputs = self.layers(
|
|
|
|
|
|
|
| 474 |
|
| 475 |
return FlaxBaseModelOutput(
|
| 476 |
last_hidden_state=outputs.last_hidden_state,
|
|
@@ -488,7 +520,9 @@ class DalleBartDecoder(nn.Module):
|
|
| 488 |
|
| 489 |
embed_dim = self.config.d_model
|
| 490 |
self.padding_idx = self.config.pad_token_id
|
| 491 |
-
self.embed_scale =
|
|
|
|
|
|
|
| 492 |
|
| 493 |
self.embed_tokens = nn.Embed(
|
| 494 |
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
|
@@ -619,11 +653,15 @@ class DalleBartPreTrainedModel(FlaxPreTrainedModel):
|
|
| 619 |
**kwargs,
|
| 620 |
):
|
| 621 |
module = self.module_class(config=config, dtype=dtype)
|
| 622 |
-
super().__init__(
|
|
|
|
|
|
|
| 623 |
|
| 624 |
@property
|
| 625 |
def num_params(self):
|
| 626 |
-
num_params = jax.tree_map(
|
|
|
|
|
|
|
| 627 |
return sum(list(num_params))
|
| 628 |
|
| 629 |
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
|
@@ -636,8 +674,12 @@ class DalleBartPreTrainedModel(FlaxPreTrainedModel):
|
|
| 636 |
decoder_attention_mask = jnp.ones_like(input_ids)
|
| 637 |
|
| 638 |
batch_size, sequence_length = input_ids.shape
|
| 639 |
-
position_ids = jnp.broadcast_to(
|
| 640 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 641 |
|
| 642 |
params_rng, dropout_rng = jax.random.split(rng)
|
| 643 |
rngs = {"params": params_rng, "dropout": dropout_rng}
|
|
@@ -670,10 +712,17 @@ class DalleBartPreTrainedModel(FlaxPreTrainedModel):
|
|
| 670 |
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
| 671 |
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
| 672 |
decoder_position_ids = jnp.broadcast_to(
|
| 673 |
-
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]),
|
|
|
|
| 674 |
)
|
| 675 |
|
| 676 |
-
def _decoder_forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 677 |
decoder_module = module._get_decoder_module()
|
| 678 |
return decoder_module(
|
| 679 |
decoder_input_ids,
|
|
@@ -720,7 +769,9 @@ class DalleBartPreTrainedModel(FlaxPreTrainedModel):
|
|
| 720 |
attention_mask = jnp.ones_like(input_ids)
|
| 721 |
if position_ids is None:
|
| 722 |
batch_size, sequence_length = input_ids.shape
|
| 723 |
-
position_ids = jnp.broadcast_to(
|
|
|
|
|
|
|
| 724 |
|
| 725 |
# Handle any PRNG if needed
|
| 726 |
rngs = {}
|
|
@@ -754,19 +805,25 @@ class DalleBartPreTrainedModel(FlaxPreTrainedModel):
|
|
| 754 |
params: dict = None,
|
| 755 |
dropout_rng: PRNGKey = None,
|
| 756 |
):
|
| 757 |
-
return_dict =
|
|
|
|
|
|
|
| 758 |
|
| 759 |
# prepare encoder inputs
|
| 760 |
if attention_mask is None:
|
| 761 |
attention_mask = jnp.ones_like(input_ids)
|
| 762 |
if position_ids is None:
|
| 763 |
batch_size, sequence_length = input_ids.shape
|
| 764 |
-
position_ids = jnp.broadcast_to(
|
|
|
|
|
|
|
| 765 |
|
| 766 |
# prepare decoder inputs
|
| 767 |
if decoder_input_ids is None:
|
| 768 |
decoder_input_ids = shift_tokens_right(
|
| 769 |
-
input_ids,
|
|
|
|
|
|
|
| 770 |
)
|
| 771 |
if decoder_attention_mask is None:
|
| 772 |
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
|
@@ -839,7 +896,9 @@ class DalleBartForConditionalGenerationModule(nn.Module):
|
|
| 839 |
|
| 840 |
if self.config.tie_word_embeddings:
|
| 841 |
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
|
| 842 |
-
lm_logits = self.lm_head.apply(
|
|
|
|
|
|
|
| 843 |
else:
|
| 844 |
lm_logits = self.lm_head(hidden_states)
|
| 845 |
|
|
@@ -901,7 +960,9 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
| 901 |
|
| 902 |
if decoder_position_ids is None:
|
| 903 |
if past_key_values is not None:
|
| 904 |
-
raise ValueError(
|
|
|
|
|
|
|
| 905 |
|
| 906 |
decoder_position_ids = jnp.broadcast_to(
|
| 907 |
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
|
@@ -923,7 +984,13 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
| 923 |
else:
|
| 924 |
mutable = False
|
| 925 |
|
| 926 |
-
def _decoder_forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 927 |
decoder_module = module._get_decoder_module()
|
| 928 |
outputs = decoder_module(
|
| 929 |
decoder_input_ids,
|
|
@@ -934,8 +1001,12 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
| 934 |
hidden_states = outputs[0]
|
| 935 |
|
| 936 |
if self.config.tie_word_embeddings:
|
| 937 |
-
shared_embedding = module.model.variables["params"]["shared"][
|
| 938 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 939 |
else:
|
| 940 |
lm_logits = module.lm_head(hidden_states)
|
| 941 |
|
|
@@ -993,9 +1064,13 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
| 993 |
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
| 994 |
if decoder_attention_mask is not None:
|
| 995 |
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
|
| 996 |
-
extended_attention_mask = lax.dynamic_update_slice(
|
|
|
|
|
|
|
| 997 |
else:
|
| 998 |
-
position_ids = jnp.broadcast_to(
|
|
|
|
|
|
|
| 999 |
|
| 1000 |
return {
|
| 1001 |
"past_key_values": past_key_values,
|
|
@@ -1007,5 +1082,7 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
| 1007 |
|
| 1008 |
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
| 1009 |
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
| 1010 |
-
model_kwargs["decoder_position_ids"] =
|
|
|
|
|
|
|
| 1011 |
return model_kwargs
|
|
|
|
| 18 |
from functools import partial
|
| 19 |
from typing import Callable, Optional, Tuple
|
| 20 |
|
|
|
|
|
|
|
| 21 |
import flax.linen as nn
|
| 22 |
import jax
|
| 23 |
import jax.numpy as jnp
|
| 24 |
+
import numpy as np
|
| 25 |
from flax.core.frozen_dict import FrozenDict, unfreeze
|
|
|
|
| 26 |
from flax.linen import combine_masks, make_causal_mask
|
| 27 |
from flax.linen.attention import dot_product_attention_weights
|
| 28 |
+
from flax.traverse_util import flatten_dict
|
| 29 |
from jax import lax
|
| 30 |
from jax.random import PRNGKey
|
|
|
|
|
|
|
| 31 |
from transformers.modeling_flax_outputs import (
|
| 32 |
FlaxBaseModelOutput,
|
| 33 |
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
|
|
|
| 35 |
FlaxSeq2SeqLMOutput,
|
| 36 |
FlaxSeq2SeqModelOutput,
|
| 37 |
)
|
| 38 |
+
from transformers.modeling_flax_utils import ACT2FN, FlaxPreTrainedModel
|
|
|
|
|
|
|
|
|
|
| 39 |
from transformers.utils import logging
|
| 40 |
|
|
|
|
| 41 |
from .configuration import DalleBartConfig
|
| 42 |
|
|
|
|
| 43 |
logger = logging.get_logger(__name__)
|
| 44 |
|
| 45 |
|
| 46 |
+
def shift_tokens_right(
|
| 47 |
+
input_ids: np.array, pad_token_id: int, decoder_start_token_id: int
|
| 48 |
+
) -> np.ndarray:
|
| 49 |
"""
|
| 50 |
Shift input ids one token to the right.
|
| 51 |
"""
|
|
|
|
| 53 |
shifted_input_ids[:, 1:] = input_ids[:, :-1]
|
| 54 |
shifted_input_ids[:, 0] = decoder_start_token_id
|
| 55 |
|
| 56 |
+
shifted_input_ids = np.where(
|
| 57 |
+
shifted_input_ids == -100, pad_token_id, shifted_input_ids
|
| 58 |
+
)
|
| 59 |
return shifted_input_ids
|
| 60 |
|
| 61 |
|
|
|
|
| 93 |
)
|
| 94 |
|
| 95 |
def _split_heads(self, hidden_states):
|
| 96 |
+
return hidden_states.reshape(
|
| 97 |
+
hidden_states.shape[:2] + (self.num_heads, self.head_dim)
|
| 98 |
+
)
|
| 99 |
|
| 100 |
def _merge_heads(self, hidden_states):
|
| 101 |
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
|
|
|
| 109 |
"""
|
| 110 |
# detect if we're initializing by absence of existing cache data.
|
| 111 |
is_initialized = self.has_variable("cache", "cached_key")
|
| 112 |
+
cached_key = self.variable(
|
| 113 |
+
"cache", "cached_key", jnp.zeros, key.shape, key.dtype
|
| 114 |
+
)
|
| 115 |
+
cached_value = self.variable(
|
| 116 |
+
"cache", "cached_value", jnp.zeros, value.shape, value.dtype
|
| 117 |
+
)
|
| 118 |
+
cache_index = self.variable(
|
| 119 |
+
"cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)
|
| 120 |
+
)
|
| 121 |
|
| 122 |
if is_initialized:
|
| 123 |
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
|
|
|
| 176 |
mask_shift = self.variables["cache"]["cache_index"]
|
| 177 |
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
| 178 |
causal_mask = lax.dynamic_slice(
|
| 179 |
+
self.causal_mask,
|
| 180 |
+
(0, 0, mask_shift, 0),
|
| 181 |
+
(1, 1, query_length, max_decoder_length),
|
| 182 |
)
|
| 183 |
else:
|
| 184 |
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
| 185 |
+
causal_mask = jnp.broadcast_to(
|
| 186 |
+
causal_mask, (batch_size,) + causal_mask.shape[1:]
|
| 187 |
+
)
|
| 188 |
|
| 189 |
# combine masks if needed
|
| 190 |
if self.causal:
|
| 191 |
+
attention_mask = jnp.broadcast_to(
|
| 192 |
+
jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape
|
| 193 |
+
)
|
| 194 |
attention_mask = combine_masks(attention_mask, causal_mask)
|
| 195 |
else:
|
| 196 |
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
|
|
|
| 271 |
deterministic: bool = True,
|
| 272 |
) -> Tuple[jnp.ndarray]:
|
| 273 |
residual = hidden_states
|
| 274 |
+
hidden_states = self.self_attn(
|
| 275 |
+
hidden_states=hidden_states, attention_mask=attention_mask
|
| 276 |
+
)
|
| 277 |
|
| 278 |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 279 |
hidden_states = residual + hidden_states
|
|
|
|
| 281 |
|
| 282 |
residual = hidden_states
|
| 283 |
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
| 284 |
+
hidden_states = self.activation_dropout_layer(
|
| 285 |
+
hidden_states, deterministic=deterministic
|
| 286 |
+
)
|
| 287 |
hidden_states = self.fc2(hidden_states)
|
| 288 |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 289 |
hidden_states = residual + hidden_states
|
|
|
|
| 297 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
| 298 |
|
| 299 |
def setup(self):
|
| 300 |
+
layer_module = (
|
| 301 |
+
nn.remat(FlaxBartEncoderLayer)
|
| 302 |
+
if self.config.gradient_checkpointing
|
| 303 |
+
else FlaxBartEncoderLayer
|
| 304 |
+
)
|
| 305 |
self.layers = [
|
| 306 |
+
layer_module(self.config, name=str(i), dtype=self.dtype)
|
| 307 |
+
for i in range(self.config.encoder_layers)
|
| 308 |
]
|
| 309 |
|
| 310 |
def __call__(
|
|
|
|
| 378 |
|
| 379 |
# Self Attention
|
| 380 |
hidden_states = self.self_attn(
|
| 381 |
+
hidden_states=hidden_states,
|
| 382 |
+
attention_mask=attention_mask,
|
| 383 |
+
init_cache=init_cache,
|
| 384 |
)
|
| 385 |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 386 |
hidden_states = residual + hidden_states
|
|
|
|
| 401 |
# Fully Connected
|
| 402 |
residual = hidden_states
|
| 403 |
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
| 404 |
+
hidden_states = self.activation_dropout_layer(
|
| 405 |
+
hidden_states, deterministic=deterministic
|
| 406 |
+
)
|
| 407 |
hidden_states = self.fc2(hidden_states)
|
| 408 |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 409 |
hidden_states = residual + hidden_states
|
|
|
|
| 417 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
| 418 |
|
| 419 |
def setup(self):
|
| 420 |
+
layer_module = (
|
| 421 |
+
nn.remat(FlaxBartDecoderLayer)
|
| 422 |
+
if self.config.gradient_checkpointing
|
| 423 |
+
else FlaxBartDecoderLayer
|
| 424 |
+
)
|
| 425 |
self.layers = [
|
| 426 |
+
layer_module(self.config, name=str(i), dtype=self.dtype)
|
| 427 |
+
for i in range(self.config.decoder_layers)
|
| 428 |
]
|
| 429 |
|
| 430 |
def __call__(
|
|
|
|
| 447 |
deterministic=deterministic,
|
| 448 |
)
|
| 449 |
|
| 450 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
| 451 |
+
last_hidden_state=hidden_states
|
| 452 |
+
)
|
| 453 |
|
| 454 |
|
| 455 |
class DalleBartEncoder(nn.Module):
|
|
|
|
| 500 |
hidden_states = self.layernorm_embedding(hidden_states)
|
| 501 |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
| 502 |
|
| 503 |
+
outputs = self.layers(
|
| 504 |
+
hidden_states, attention_mask, deterministic=deterministic
|
| 505 |
+
)
|
| 506 |
|
| 507 |
return FlaxBaseModelOutput(
|
| 508 |
last_hidden_state=outputs.last_hidden_state,
|
|
|
|
| 520 |
|
| 521 |
embed_dim = self.config.d_model
|
| 522 |
self.padding_idx = self.config.pad_token_id
|
| 523 |
+
self.embed_scale = (
|
| 524 |
+
math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
|
| 525 |
+
)
|
| 526 |
|
| 527 |
self.embed_tokens = nn.Embed(
|
| 528 |
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
|
|
|
| 653 |
**kwargs,
|
| 654 |
):
|
| 655 |
module = self.module_class(config=config, dtype=dtype)
|
| 656 |
+
super().__init__(
|
| 657 |
+
config, module, input_shape=input_shape, seed=seed, dtype=dtype, **kwargs
|
| 658 |
+
)
|
| 659 |
|
| 660 |
@property
|
| 661 |
def num_params(self):
|
| 662 |
+
num_params = jax.tree_map(
|
| 663 |
+
lambda param: param.size, flatten_dict(unfreeze(self.params))
|
| 664 |
+
).values()
|
| 665 |
return sum(list(num_params))
|
| 666 |
|
| 667 |
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
|
|
|
| 674 |
decoder_attention_mask = jnp.ones_like(input_ids)
|
| 675 |
|
| 676 |
batch_size, sequence_length = input_ids.shape
|
| 677 |
+
position_ids = jnp.broadcast_to(
|
| 678 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 679 |
+
)
|
| 680 |
+
decoder_position_ids = jnp.broadcast_to(
|
| 681 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 682 |
+
)
|
| 683 |
|
| 684 |
params_rng, dropout_rng = jax.random.split(rng)
|
| 685 |
rngs = {"params": params_rng, "dropout": dropout_rng}
|
|
|
|
| 712 |
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
| 713 |
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
| 714 |
decoder_position_ids = jnp.broadcast_to(
|
| 715 |
+
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]),
|
| 716 |
+
decoder_input_ids.shape,
|
| 717 |
)
|
| 718 |
|
| 719 |
+
def _decoder_forward(
|
| 720 |
+
module,
|
| 721 |
+
decoder_input_ids,
|
| 722 |
+
decoder_attention_mask,
|
| 723 |
+
decoder_position_ids,
|
| 724 |
+
**kwargs,
|
| 725 |
+
):
|
| 726 |
decoder_module = module._get_decoder_module()
|
| 727 |
return decoder_module(
|
| 728 |
decoder_input_ids,
|
|
|
|
| 769 |
attention_mask = jnp.ones_like(input_ids)
|
| 770 |
if position_ids is None:
|
| 771 |
batch_size, sequence_length = input_ids.shape
|
| 772 |
+
position_ids = jnp.broadcast_to(
|
| 773 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 774 |
+
)
|
| 775 |
|
| 776 |
# Handle any PRNG if needed
|
| 777 |
rngs = {}
|
|
|
|
| 805 |
params: dict = None,
|
| 806 |
dropout_rng: PRNGKey = None,
|
| 807 |
):
|
| 808 |
+
return_dict = (
|
| 809 |
+
return_dict if return_dict is not None else self.config.return_dict
|
| 810 |
+
)
|
| 811 |
|
| 812 |
# prepare encoder inputs
|
| 813 |
if attention_mask is None:
|
| 814 |
attention_mask = jnp.ones_like(input_ids)
|
| 815 |
if position_ids is None:
|
| 816 |
batch_size, sequence_length = input_ids.shape
|
| 817 |
+
position_ids = jnp.broadcast_to(
|
| 818 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
| 819 |
+
)
|
| 820 |
|
| 821 |
# prepare decoder inputs
|
| 822 |
if decoder_input_ids is None:
|
| 823 |
decoder_input_ids = shift_tokens_right(
|
| 824 |
+
input_ids,
|
| 825 |
+
self.config.pad_token_id,
|
| 826 |
+
decoder_start_token_id=self.config.decoder_start_token_id,
|
| 827 |
)
|
| 828 |
if decoder_attention_mask is None:
|
| 829 |
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
|
|
|
| 896 |
|
| 897 |
if self.config.tie_word_embeddings:
|
| 898 |
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
|
| 899 |
+
lm_logits = self.lm_head.apply(
|
| 900 |
+
{"params": {"kernel": shared_embedding.T}}, hidden_states
|
| 901 |
+
)
|
| 902 |
else:
|
| 903 |
lm_logits = self.lm_head(hidden_states)
|
| 904 |
|
|
|
|
| 960 |
|
| 961 |
if decoder_position_ids is None:
|
| 962 |
if past_key_values is not None:
|
| 963 |
+
raise ValueError(
|
| 964 |
+
"Make sure to provide `decoder_position_ids` when passing `past_key_values`."
|
| 965 |
+
)
|
| 966 |
|
| 967 |
decoder_position_ids = jnp.broadcast_to(
|
| 968 |
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
|
|
|
| 984 |
else:
|
| 985 |
mutable = False
|
| 986 |
|
| 987 |
+
def _decoder_forward(
|
| 988 |
+
module,
|
| 989 |
+
decoder_input_ids,
|
| 990 |
+
decoder_attention_mask,
|
| 991 |
+
decoder_position_ids,
|
| 992 |
+
**kwargs,
|
| 993 |
+
):
|
| 994 |
decoder_module = module._get_decoder_module()
|
| 995 |
outputs = decoder_module(
|
| 996 |
decoder_input_ids,
|
|
|
|
| 1001 |
hidden_states = outputs[0]
|
| 1002 |
|
| 1003 |
if self.config.tie_word_embeddings:
|
| 1004 |
+
shared_embedding = module.model.variables["params"]["shared"][
|
| 1005 |
+
"embedding"
|
| 1006 |
+
]
|
| 1007 |
+
lm_logits = module.lm_head.apply(
|
| 1008 |
+
{"params": {"kernel": shared_embedding.T}}, hidden_states
|
| 1009 |
+
)
|
| 1010 |
else:
|
| 1011 |
lm_logits = module.lm_head(hidden_states)
|
| 1012 |
|
|
|
|
| 1064 |
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
| 1065 |
if decoder_attention_mask is not None:
|
| 1066 |
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
|
| 1067 |
+
extended_attention_mask = lax.dynamic_update_slice(
|
| 1068 |
+
extended_attention_mask, decoder_attention_mask, (0, 0)
|
| 1069 |
+
)
|
| 1070 |
else:
|
| 1071 |
+
position_ids = jnp.broadcast_to(
|
| 1072 |
+
jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
|
| 1073 |
+
)
|
| 1074 |
|
| 1075 |
return {
|
| 1076 |
"past_key_values": past_key_values,
|
|
|
|
| 1082 |
|
| 1083 |
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
| 1084 |
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
| 1085 |
+
model_kwargs["decoder_position_ids"] = (
|
| 1086 |
+
model_kwargs["decoder_position_ids"][:, -1:] + 1
|
| 1087 |
+
)
|
| 1088 |
return model_kwargs
|
dalle_mini/model/partitions.py
CHANGED
|
@@ -4,7 +4,6 @@ from flax.core.frozen_dict import freeze
|
|
| 4 |
from flax.traverse_util import flatten_dict, unflatten_dict
|
| 5 |
from jax.experimental import PartitionSpec as P
|
| 6 |
|
| 7 |
-
|
| 8 |
# utils adapted from https://github.com/google-research/google-research/blob/master/flax_models/t5x/partitions.py
|
| 9 |
# Sentinels
|
| 10 |
_unmatched = object()
|
|
|
|
| 4 |
from flax.traverse_util import flatten_dict, unflatten_dict
|
| 5 |
from jax.experimental import PartitionSpec as P
|
| 6 |
|
|
|
|
| 7 |
# utils adapted from https://github.com/google-research/google-research/blob/master/flax_models/t5x/partitions.py
|
| 8 |
# Sentinels
|
| 9 |
_unmatched = object()
|