Spaces:
Runtime error
Runtime error
feat: use model definition
Browse files- dalle_mini/model.py +23 -22
- dev/seq2seq/run_seq2seq_flax.py +56 -132
dalle_mini/model.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
import jax
|
| 3 |
import flax.linen as nn
|
| 4 |
|
|
@@ -7,25 +6,14 @@ from transformers.models.bart.modeling_flax_bart import (
|
|
| 7 |
FlaxBartForConditionalGenerationModule,
|
| 8 |
FlaxBartForConditionalGeneration,
|
| 9 |
FlaxBartEncoder,
|
| 10 |
-
FlaxBartDecoder
|
| 11 |
)
|
| 12 |
|
| 13 |
from transformers import BartConfig
|
| 14 |
|
| 15 |
|
| 16 |
-
# Model hyperparameters, for convenience
|
| 17 |
-
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
| 18 |
-
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
| 19 |
-
BOS_TOKEN_ID = 16384
|
| 20 |
-
BASE_MODEL = 'facebook/bart-large-cnn' # we currently have issues with bart-large
|
| 21 |
-
|
| 22 |
-
|
| 23 |
class CustomFlaxBartModule(FlaxBartModule):
|
| 24 |
def setup(self):
|
| 25 |
-
# check config is valid, otherwise set default values
|
| 26 |
-
self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE)
|
| 27 |
-
self.config.max_position_embeddings_decoder = getattr(self.config, 'max_position_embeddings_decoder', OUTPUT_LENGTH)
|
| 28 |
-
|
| 29 |
# we keep shared to easily load pre-trained weights
|
| 30 |
self.shared = nn.Embed(
|
| 31 |
self.config.vocab_size,
|
|
@@ -35,32 +23,45 @@ class CustomFlaxBartModule(FlaxBartModule):
|
|
| 35 |
)
|
| 36 |
# a separate embedding is used for the decoder
|
| 37 |
self.decoder_embed = nn.Embed(
|
| 38 |
-
self.config.
|
| 39 |
self.config.d_model,
|
| 40 |
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 41 |
dtype=self.dtype,
|
| 42 |
)
|
| 43 |
-
self.encoder = FlaxBartEncoder(
|
|
|
|
|
|
|
| 44 |
|
| 45 |
# the decoder has a different config
|
| 46 |
decoder_config = BartConfig(self.config.to_dict())
|
| 47 |
-
decoder_config.max_position_embeddings =
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
class CustomFlaxBartForConditionalGenerationModule(
|
|
|
|
|
|
|
| 52 |
def setup(self):
|
| 53 |
# check config is valid, otherwise set default values
|
| 54 |
-
|
|
|
|
| 55 |
|
| 56 |
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
| 57 |
self.lm_head = nn.Dense(
|
| 58 |
-
self.config.
|
| 59 |
use_bias=False,
|
| 60 |
dtype=self.dtype,
|
| 61 |
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 62 |
)
|
| 63 |
-
self.final_logits_bias = self.param(
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
| 66 |
module_class = CustomFlaxBartForConditionalGenerationModule
|
|
|
|
|
|
|
| 1 |
import jax
|
| 2 |
import flax.linen as nn
|
| 3 |
|
|
|
|
| 6 |
FlaxBartForConditionalGenerationModule,
|
| 7 |
FlaxBartForConditionalGeneration,
|
| 8 |
FlaxBartEncoder,
|
| 9 |
+
FlaxBartDecoder,
|
| 10 |
)
|
| 11 |
|
| 12 |
from transformers import BartConfig
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
class CustomFlaxBartModule(FlaxBartModule):
|
| 16 |
def setup(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# we keep shared to easily load pre-trained weights
|
| 18 |
self.shared = nn.Embed(
|
| 19 |
self.config.vocab_size,
|
|
|
|
| 23 |
)
|
| 24 |
# a separate embedding is used for the decoder
|
| 25 |
self.decoder_embed = nn.Embed(
|
| 26 |
+
self.config.image_vocab_size + 1,
|
| 27 |
self.config.d_model,
|
| 28 |
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 29 |
dtype=self.dtype,
|
| 30 |
)
|
| 31 |
+
self.encoder = FlaxBartEncoder(
|
| 32 |
+
self.config, dtype=self.dtype, embed_tokens=self.shared
|
| 33 |
+
)
|
| 34 |
|
| 35 |
# the decoder has a different config
|
| 36 |
decoder_config = BartConfig(self.config.to_dict())
|
| 37 |
+
decoder_config.max_position_embeddings = (
|
| 38 |
+
self.config.image_length + 1 # image tokens + BOS
|
| 39 |
+
)
|
| 40 |
+
decoder_config.vocab_size = self.config.image_vocab_size + 1
|
| 41 |
+
self.decoder = FlaxBartDecoder(
|
| 42 |
+
decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
|
| 46 |
+
class CustomFlaxBartForConditionalGenerationModule(
|
| 47 |
+
FlaxBartForConditionalGenerationModule
|
| 48 |
+
):
|
| 49 |
def setup(self):
|
| 50 |
# check config is valid, otherwise set default values
|
| 51 |
+
# TODO: simplify with custom config class
|
| 52 |
+
self.config.text_normalized = True / False
|
| 53 |
|
| 54 |
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
| 55 |
self.lm_head = nn.Dense(
|
| 56 |
+
self.config.image_vocab_size + 1, # encoded image token space + 1 for bos
|
| 57 |
use_bias=False,
|
| 58 |
dtype=self.dtype,
|
| 59 |
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 60 |
)
|
| 61 |
+
self.final_logits_bias = self.param(
|
| 62 |
+
"final_logits_bias", self.bias_init, (1, self.config.image_vocab_size + 1)
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
|
| 66 |
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
| 67 |
module_class = CustomFlaxBartForConditionalGenerationModule
|
dev/seq2seq/run_seq2seq_flax.py
CHANGED
|
@@ -17,10 +17,9 @@
|
|
| 17 |
Fine-tuning the library models for seq2seq, text to image.
|
| 18 |
Script adapted from run_summarization_flax.py
|
| 19 |
"""
|
| 20 |
-
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
| 21 |
|
| 22 |
import os
|
| 23 |
-
import logging
|
| 24 |
import sys
|
| 25 |
from dataclasses import dataclass, field
|
| 26 |
from pathlib import Path
|
|
@@ -44,7 +43,6 @@ from flax.training import train_state
|
|
| 44 |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
| 45 |
from transformers import (
|
| 46 |
AutoTokenizer,
|
| 47 |
-
FlaxBartForConditionalGeneration,
|
| 48 |
HfArgumentParser,
|
| 49 |
TrainingArguments,
|
| 50 |
)
|
|
@@ -53,16 +51,9 @@ from transformers.models.bart.modeling_flax_bart import *
|
|
| 53 |
import wandb
|
| 54 |
|
| 55 |
from dalle_mini.text import TextNormalizer
|
|
|
|
| 56 |
|
| 57 |
-
logger =
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
# Model hyperparameters, for convenience
|
| 61 |
-
# TODO: the model has now it's own definition file and should be imported
|
| 62 |
-
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
| 63 |
-
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
| 64 |
-
BOS_TOKEN_ID = 16384
|
| 65 |
-
BASE_MODEL = "facebook/bart-large-cnn" # we currently have issues with bart-large
|
| 66 |
|
| 67 |
|
| 68 |
@dataclass
|
|
@@ -72,24 +63,30 @@ class ModelArguments:
|
|
| 72 |
"""
|
| 73 |
|
| 74 |
model_name_or_path: Optional[str] = field(
|
| 75 |
-
default=
|
| 76 |
metadata={
|
| 77 |
"help": "The model checkpoint for weights initialization."
|
| 78 |
"Don't set if you want to train a model from scratch."
|
| 79 |
},
|
| 80 |
)
|
| 81 |
-
|
| 82 |
default=None,
|
| 83 |
-
metadata={
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
)
|
| 87 |
-
|
| 88 |
-
default=
|
| 89 |
metadata={
|
| 90 |
-
"help": "
|
| 91 |
},
|
| 92 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
dtype: Optional[str] = field(
|
| 94 |
default="float32",
|
| 95 |
metadata={
|
|
@@ -158,22 +155,6 @@ class DataTrainingArguments:
|
|
| 158 |
default=False,
|
| 159 |
metadata={"help": "Whether to use decay in the learning rate scheduler."},
|
| 160 |
)
|
| 161 |
-
max_target_length: Optional[int] = field(
|
| 162 |
-
default=OUTPUT_LENGTH,
|
| 163 |
-
metadata={
|
| 164 |
-
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
|
| 165 |
-
"than this will be truncated, sequences shorter will be padded."
|
| 166 |
-
},
|
| 167 |
-
)
|
| 168 |
-
val_max_target_length: Optional[int] = field(
|
| 169 |
-
default=OUTPUT_LENGTH,
|
| 170 |
-
metadata={
|
| 171 |
-
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
|
| 172 |
-
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
|
| 173 |
-
"This argument is also used to override the `max_length` param of `model.generate`, which is used "
|
| 174 |
-
"during evaluation."
|
| 175 |
-
},
|
| 176 |
-
)
|
| 177 |
max_train_samples: Optional[int] = field(
|
| 178 |
default=None,
|
| 179 |
metadata={
|
|
@@ -188,10 +169,6 @@ class DataTrainingArguments:
|
|
| 188 |
"value if set."
|
| 189 |
},
|
| 190 |
)
|
| 191 |
-
normalize_text: bool = field(
|
| 192 |
-
default=False,
|
| 193 |
-
metadata={"help": "Normalize/Simplify text"},
|
| 194 |
-
)
|
| 195 |
preprocessing_num_workers: Optional[int] = field(
|
| 196 |
default=80, # ensure we have the same datasets cached data and avoid using too much space
|
| 197 |
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
@@ -243,8 +220,6 @@ class DataTrainingArguments:
|
|
| 243 |
"json",
|
| 244 |
"jsonl",
|
| 245 |
], "`validation_file` should be a tsv, csv or json file."
|
| 246 |
-
if self.val_max_target_length is None:
|
| 247 |
-
self.val_max_target_length = self.max_target_length
|
| 248 |
if self.streaming and (self.len_train is None or self.len_eval is None):
|
| 249 |
raise ValueError(
|
| 250 |
"Streaming requires providing length of training and validation datasets"
|
|
@@ -273,70 +248,6 @@ class TrainState(train_state.TrainState):
|
|
| 273 |
return self.replace(step=new_step, opt_state=new_opt_state)
|
| 274 |
|
| 275 |
|
| 276 |
-
class CustomFlaxBartModule(FlaxBartModule):
|
| 277 |
-
def setup(self):
|
| 278 |
-
# check config is valid, otherwise set default values
|
| 279 |
-
self.config.vocab_size_output = getattr(
|
| 280 |
-
self.config, "vocab_size_output", OUTPUT_VOCAB_SIZE
|
| 281 |
-
)
|
| 282 |
-
self.config.max_position_embeddings_decoder = getattr(
|
| 283 |
-
self.config, "max_position_embeddings_decoder", OUTPUT_LENGTH
|
| 284 |
-
)
|
| 285 |
-
|
| 286 |
-
# we keep shared to easily load pre-trained weights
|
| 287 |
-
self.shared = nn.Embed(
|
| 288 |
-
self.config.vocab_size,
|
| 289 |
-
self.config.d_model,
|
| 290 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 291 |
-
dtype=self.dtype,
|
| 292 |
-
)
|
| 293 |
-
# a separate embedding is used for the decoder
|
| 294 |
-
self.decoder_embed = nn.Embed(
|
| 295 |
-
self.config.vocab_size_output,
|
| 296 |
-
self.config.d_model,
|
| 297 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 298 |
-
dtype=self.dtype,
|
| 299 |
-
)
|
| 300 |
-
self.encoder = FlaxBartEncoder(
|
| 301 |
-
self.config, dtype=self.dtype, embed_tokens=self.shared
|
| 302 |
-
)
|
| 303 |
-
|
| 304 |
-
# the decoder has a different config
|
| 305 |
-
decoder_config = BartConfig(self.config.to_dict())
|
| 306 |
-
decoder_config.max_position_embeddings = (
|
| 307 |
-
self.config.max_position_embeddings_decoder
|
| 308 |
-
)
|
| 309 |
-
decoder_config.vocab_size = self.config.vocab_size_output
|
| 310 |
-
self.decoder = FlaxBartDecoder(
|
| 311 |
-
decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed
|
| 312 |
-
)
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
class CustomFlaxBartForConditionalGenerationModule(
|
| 316 |
-
FlaxBartForConditionalGenerationModule
|
| 317 |
-
):
|
| 318 |
-
def setup(self):
|
| 319 |
-
# check config is valid, otherwise set default values
|
| 320 |
-
self.config.vocab_size_output = getattr(
|
| 321 |
-
self.config, "vocab_size_output", OUTPUT_VOCAB_SIZE
|
| 322 |
-
)
|
| 323 |
-
|
| 324 |
-
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
| 325 |
-
self.lm_head = nn.Dense(
|
| 326 |
-
self.config.vocab_size_output,
|
| 327 |
-
use_bias=False,
|
| 328 |
-
dtype=self.dtype,
|
| 329 |
-
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 330 |
-
)
|
| 331 |
-
self.final_logits_bias = self.param(
|
| 332 |
-
"final_logits_bias", self.bias_init, (1, self.config.vocab_size_output)
|
| 333 |
-
)
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
| 337 |
-
module_class = CustomFlaxBartForConditionalGenerationModule
|
| 338 |
-
|
| 339 |
-
|
| 340 |
def data_loader(
|
| 341 |
rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False
|
| 342 |
):
|
|
@@ -440,13 +351,13 @@ def main():
|
|
| 440 |
)
|
| 441 |
|
| 442 |
# Make one log on every process with the configuration for debugging.
|
| 443 |
-
|
| 444 |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 445 |
datefmt="%m/%d/%Y %H:%M:%S",
|
| 446 |
-
level=
|
| 447 |
)
|
| 448 |
# Setup logging, we only want one process per machine to log things on the screen.
|
| 449 |
-
logger.setLevel(
|
| 450 |
if jax.process_index() == 0:
|
| 451 |
datasets.utils.logging.set_verbosity_warning()
|
| 452 |
transformers.utils.logging.set_verbosity_info()
|
|
@@ -483,44 +394,57 @@ def main():
|
|
| 483 |
if model_args.from_checkpoint is not None:
|
| 484 |
artifact = wandb.run.use_artifact(model_args.from_checkpoint)
|
| 485 |
artifact_dir = artifact.download()
|
|
|
|
|
|
|
| 486 |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
| 487 |
|
| 488 |
# load tokenizer
|
| 489 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 490 |
artifact_dir,
|
| 491 |
-
use_fast=
|
| 492 |
)
|
| 493 |
|
| 494 |
else:
|
| 495 |
# Set up our new model config
|
|
|
|
| 496 |
config = BartConfig.from_pretrained(model_args.model_name_or_path)
|
| 497 |
-
config.
|
| 498 |
-
config.
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
)
|
| 502 |
-
config.
|
| 503 |
-
BOS_TOKEN_ID # should not be needed (as we generate until max_length)
|
| 504 |
-
)
|
| 505 |
-
config.eos_token_id = BOS_TOKEN_ID + 1 # unreachable
|
| 506 |
config.forced_bos_token_id = None # we don't need this token
|
| 507 |
config.forced_eos_token_id = None # we don't need this token
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
config.
|
| 512 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 513 |
|
| 514 |
# Create a custom model and initialize it randomly
|
| 515 |
-
model = CustomFlaxBartForConditionalGeneration(
|
| 516 |
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
|
| 517 |
)
|
| 518 |
|
| 519 |
# Load tokenizer
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
|
| 525 |
print(f"TPUs: {jax.device_count()}")
|
| 526 |
assert jax.device_count() == 8, "TPUs in use, please check running processes"
|
|
@@ -543,7 +467,7 @@ def main():
|
|
| 543 |
shifted_input_ids[:, 0] = decoder_start_token_id
|
| 544 |
return shifted_input_ids
|
| 545 |
|
| 546 |
-
text_normalizer = TextNormalizer() if
|
| 547 |
|
| 548 |
def normalize_text(example):
|
| 549 |
example[text_column] = text_normalizer(example[text_column])
|
|
@@ -590,7 +514,7 @@ def main():
|
|
| 590 |
)
|
| 591 |
if data_args.streaming:
|
| 592 |
train_dataset = train_dataset.shuffle(1000, training_args.seed)
|
| 593 |
-
if
|
| 594 |
train_dataset = (
|
| 595 |
train_dataset.map(normalize_text)
|
| 596 |
if data_args.streaming
|
|
@@ -627,7 +551,7 @@ def main():
|
|
| 627 |
if data_args.streaming
|
| 628 |
else eval_dataset.select(range(data_args.max_train_samples))
|
| 629 |
)
|
| 630 |
-
if
|
| 631 |
eval_dataset = (
|
| 632 |
eval_dataset.map(normalize_text)
|
| 633 |
if data_args.streaming
|
|
|
|
| 17 |
Fine-tuning the library models for seq2seq, text to image.
|
| 18 |
Script adapted from run_summarization_flax.py
|
| 19 |
"""
|
|
|
|
| 20 |
|
| 21 |
import os
|
| 22 |
+
import logging
|
| 23 |
import sys
|
| 24 |
from dataclasses import dataclass, field
|
| 25 |
from pathlib import Path
|
|
|
|
| 43 |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
| 44 |
from transformers import (
|
| 45 |
AutoTokenizer,
|
|
|
|
| 46 |
HfArgumentParser,
|
| 47 |
TrainingArguments,
|
| 48 |
)
|
|
|
|
| 51 |
import wandb
|
| 52 |
|
| 53 |
from dalle_mini.text import TextNormalizer
|
| 54 |
+
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
| 55 |
|
| 56 |
+
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
@dataclass
|
|
|
|
| 63 |
"""
|
| 64 |
|
| 65 |
model_name_or_path: Optional[str] = field(
|
| 66 |
+
default=None,
|
| 67 |
metadata={
|
| 68 |
"help": "The model checkpoint for weights initialization."
|
| 69 |
"Don't set if you want to train a model from scratch."
|
| 70 |
},
|
| 71 |
)
|
| 72 |
+
image_vocab_size: Optional[int] = field(
|
| 73 |
default=None,
|
| 74 |
+
metadata={"help": "Vocab size of image encoder"},
|
| 75 |
+
)
|
| 76 |
+
image_length: Optional[int] = field(
|
| 77 |
+
default=None,
|
| 78 |
+
metadata={"help": "Number of tokens per image"},
|
| 79 |
)
|
| 80 |
+
tokenizer_name: Optional[str] = field(
|
| 81 |
+
default=None,
|
| 82 |
metadata={
|
| 83 |
+
"help": "Pretrained tokenizer name or path if not the same as model_name_or_path"
|
| 84 |
},
|
| 85 |
)
|
| 86 |
+
normalize_text: bool = field(
|
| 87 |
+
default=False,
|
| 88 |
+
metadata={"help": "Whether to normalize text or not."},
|
| 89 |
+
)
|
| 90 |
dtype: Optional[str] = field(
|
| 91 |
default="float32",
|
| 92 |
metadata={
|
|
|
|
| 155 |
default=False,
|
| 156 |
metadata={"help": "Whether to use decay in the learning rate scheduler."},
|
| 157 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
max_train_samples: Optional[int] = field(
|
| 159 |
default=None,
|
| 160 |
metadata={
|
|
|
|
| 169 |
"value if set."
|
| 170 |
},
|
| 171 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
preprocessing_num_workers: Optional[int] = field(
|
| 173 |
default=80, # ensure we have the same datasets cached data and avoid using too much space
|
| 174 |
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
|
|
| 220 |
"json",
|
| 221 |
"jsonl",
|
| 222 |
], "`validation_file` should be a tsv, csv or json file."
|
|
|
|
|
|
|
| 223 |
if self.streaming and (self.len_train is None or self.len_eval is None):
|
| 224 |
raise ValueError(
|
| 225 |
"Streaming requires providing length of training and validation datasets"
|
|
|
|
| 248 |
return self.replace(step=new_step, opt_state=new_opt_state)
|
| 249 |
|
| 250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
def data_loader(
|
| 252 |
rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False
|
| 253 |
):
|
|
|
|
| 351 |
)
|
| 352 |
|
| 353 |
# Make one log on every process with the configuration for debugging.
|
| 354 |
+
logging.basicConfig(
|
| 355 |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 356 |
datefmt="%m/%d/%Y %H:%M:%S",
|
| 357 |
+
level=logging.INFO,
|
| 358 |
)
|
| 359 |
# Setup logging, we only want one process per machine to log things on the screen.
|
| 360 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
| 361 |
if jax.process_index() == 0:
|
| 362 |
datasets.utils.logging.set_verbosity_warning()
|
| 363 |
transformers.utils.logging.set_verbosity_info()
|
|
|
|
| 394 |
if model_args.from_checkpoint is not None:
|
| 395 |
artifact = wandb.run.use_artifact(model_args.from_checkpoint)
|
| 396 |
artifact_dir = artifact.download()
|
| 397 |
+
|
| 398 |
+
# load model
|
| 399 |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
| 400 |
|
| 401 |
# load tokenizer
|
| 402 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 403 |
artifact_dir,
|
| 404 |
+
use_fast=True,
|
| 405 |
)
|
| 406 |
|
| 407 |
else:
|
| 408 |
# Set up our new model config
|
| 409 |
+
# TODO: simplify with custom config class
|
| 410 |
config = BartConfig.from_pretrained(model_args.model_name_or_path)
|
| 411 |
+
config.image_vocab_size = model_args.image_vocab_size
|
| 412 |
+
config.image_length = model_args.image_length
|
| 413 |
+
# we append decoder bos to image vocab
|
| 414 |
+
config.decoder_start_token_id = config.image_vocab_size
|
| 415 |
+
# ensure we don't generate bos (in addition to decoder start token)
|
| 416 |
+
config.force_bos_token_to_be_generated = False
|
|
|
|
|
|
|
|
|
|
| 417 |
config.forced_bos_token_id = None # we don't need this token
|
| 418 |
config.forced_eos_token_id = None # we don't need this token
|
| 419 |
+
|
| 420 |
+
config.tie_word_embeddings = False
|
| 421 |
+
config.min_length = model_args.image_length + 1
|
| 422 |
+
config.max_length = model_args.image_length + 1
|
| 423 |
+
|
| 424 |
+
# below tokens need to be set to avoid error during generation (converted to jnp.array)
|
| 425 |
+
# they are not expected to be used and are set to unreachable token id
|
| 426 |
+
config.bos_token_id = config.image_vocab_size + 1
|
| 427 |
+
config.pos_token_id = config.image_vocab_size + 1
|
| 428 |
+
config.eos_token_id = config.image_vocab_size + 1
|
| 429 |
+
|
| 430 |
+
# save whether we normalize the text
|
| 431 |
+
config.normalize_text = model_args.normalize_text
|
| 432 |
|
| 433 |
# Create a custom model and initialize it randomly
|
| 434 |
+
model = CustomFlaxBartForConditionalGeneration.from_config(
|
| 435 |
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
|
| 436 |
)
|
| 437 |
|
| 438 |
# Load tokenizer
|
| 439 |
+
if model_args.tokenizer_name is not None:
|
| 440 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 441 |
+
model_args.tokenizer_name, use_fast=True
|
| 442 |
+
)
|
| 443 |
+
else:
|
| 444 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 445 |
+
model_args.model_name_or_path,
|
| 446 |
+
use_fast=True,
|
| 447 |
+
)
|
| 448 |
|
| 449 |
print(f"TPUs: {jax.device_count()}")
|
| 450 |
assert jax.device_count() == 8, "TPUs in use, please check running processes"
|
|
|
|
| 467 |
shifted_input_ids[:, 0] = decoder_start_token_id
|
| 468 |
return shifted_input_ids
|
| 469 |
|
| 470 |
+
text_normalizer = TextNormalizer() if model.config.normalize_text else None
|
| 471 |
|
| 472 |
def normalize_text(example):
|
| 473 |
example[text_column] = text_normalizer(example[text_column])
|
|
|
|
| 514 |
)
|
| 515 |
if data_args.streaming:
|
| 516 |
train_dataset = train_dataset.shuffle(1000, training_args.seed)
|
| 517 |
+
if model.config.normalize_text:
|
| 518 |
train_dataset = (
|
| 519 |
train_dataset.map(normalize_text)
|
| 520 |
if data_args.streaming
|
|
|
|
| 551 |
if data_args.streaming
|
| 552 |
else eval_dataset.select(range(data_args.max_train_samples))
|
| 553 |
)
|
| 554 |
+
if model.config.normalize_text:
|
| 555 |
eval_dataset = (
|
| 556 |
eval_dataset.map(normalize_text)
|
| 557 |
if data_args.streaming
|