Sync latest code from Hugging Face
Browse files
misinformationui/static/front.html
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Fake News Detection Chatbot</title>
|
| 7 |
+
<link rel="stylesheet" href="style.css">
|
| 8 |
+
</head>
|
| 9 |
+
|
| 10 |
+
<body>
|
| 11 |
+
<div class="chat-container" id="chat"></div>
|
| 12 |
+
|
| 13 |
+
<div class="input-area">
|
| 14 |
+
<input type="text" id="query" placeholder="Type news to verify..." />
|
| 15 |
+
<button id="sendBtn">Send</button>
|
| 16 |
+
</div>
|
| 17 |
+
|
| 18 |
+
<div class="chat-background" id="chat-background">
|
| 19 |
+
<p id="p1">Hey,</p>
|
| 20 |
+
<p id="p2">Discover misinformations around you,</p>
|
| 21 |
+
</div>
|
| 22 |
+
|
| 23 |
+
<script src="script.js"></script>
|
| 24 |
+
</body>
|
| 25 |
+
</html>
|
misinformationui/static/main.py
ADDED
|
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/home/tom/miniconda3/envs/fake_news_detection/bin/python
|
| 2 |
+
"""
|
| 3 |
+
main.py - Server for the Fake News Detection system
|
| 4 |
+
|
| 5 |
+
This script creates a Flask server that exposes API endpoints to:
|
| 6 |
+
1. Take user input (news query) from the UI
|
| 7 |
+
2. Process the request through the fake news detection pipeline
|
| 8 |
+
3. Return the results to the UI for display
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import json
|
| 13 |
+
import time
|
| 14 |
+
from dotenv import load_dotenv
|
| 15 |
+
from flask import Flask, request, jsonify
|
| 16 |
+
from flask_cors import CORS
|
| 17 |
+
|
| 18 |
+
# Import required functions from modules
|
| 19 |
+
from gdelt_api import (
|
| 20 |
+
fetch_articles_from_gdelt,
|
| 21 |
+
filter_by_whitelisted_domains,
|
| 22 |
+
normalize_gdelt_articles
|
| 23 |
+
)
|
| 24 |
+
from ranker import ArticleRanker
|
| 25 |
+
from gdelt_query_builder import generate_query, GEMINI_MODEL
|
| 26 |
+
import bias_analyzer
|
| 27 |
+
|
| 28 |
+
# Global variable for embedding model caching across requests
|
| 29 |
+
print("Preloading embedding model for faster request processing...")
|
| 30 |
+
# Preload the embedding model at server startup
|
| 31 |
+
global_ranker = ArticleRanker()
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# The function has been removed since bias category descriptions are provided directly by the Gemini model
|
| 35 |
+
# and stored in the bias_analysis["descriptions"] dictionary
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def format_results(query, ranked_articles):
|
| 39 |
+
"""
|
| 40 |
+
Format the ranked results in a structured way for the UI.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
query (str): The original query
|
| 44 |
+
ranked_articles (list): List of ranked article dictionaries
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
dict: Dictionary with formatted results
|
| 48 |
+
"""
|
| 49 |
+
result = {}
|
| 50 |
+
|
| 51 |
+
if not ranked_articles:
|
| 52 |
+
result = {
|
| 53 |
+
"status": "no_results",
|
| 54 |
+
"message": "⚠️ No news found. Possibly Fake.",
|
| 55 |
+
"details": "No reliable sources could verify this information.",
|
| 56 |
+
"articles": []
|
| 57 |
+
}
|
| 58 |
+
else:
|
| 59 |
+
# Get display configuration from environment variables
|
| 60 |
+
show_scores = os.getenv('SHOW_SIMILARITY_SCORES', 'true').lower() == 'true'
|
| 61 |
+
show_date = os.getenv('SHOW_PUBLISH_DATE', 'true').lower() == 'true'
|
| 62 |
+
show_url = os.getenv('SHOW_URL', 'true').lower() == 'true'
|
| 63 |
+
|
| 64 |
+
formatted_articles = []
|
| 65 |
+
for article in ranked_articles:
|
| 66 |
+
formatted_article = {
|
| 67 |
+
"rank": article['rank'],
|
| 68 |
+
"title": article['title'],
|
| 69 |
+
"source": article['source']
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
if show_scores:
|
| 73 |
+
formatted_article["similarity_score"] = round(article['similarity_score'], 4)
|
| 74 |
+
|
| 75 |
+
if show_url:
|
| 76 |
+
formatted_article["url"] = article['url']
|
| 77 |
+
|
| 78 |
+
if show_date:
|
| 79 |
+
formatted_article["published_at"] = article['published_at']
|
| 80 |
+
|
| 81 |
+
formatted_articles.append(formatted_article)
|
| 82 |
+
|
| 83 |
+
result = {
|
| 84 |
+
"status": "success",
|
| 85 |
+
"message": f"✅ Found {len(ranked_articles)} relevant articles for: '{query}'",
|
| 86 |
+
"articles": formatted_articles,
|
| 87 |
+
"footer": "If the news matches these reliable sources, it's likely true. If it contradicts them or no sources are found, it might be fake."
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
return result
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def remove_duplicates(articles):
|
| 94 |
+
"""
|
| 95 |
+
Remove duplicate articles based on URL.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
articles (list): List of article dictionaries
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
list: List with duplicate articles removed
|
| 102 |
+
"""
|
| 103 |
+
unique_urls = set()
|
| 104 |
+
unique_articles = []
|
| 105 |
+
|
| 106 |
+
for article in articles:
|
| 107 |
+
if article['url'] not in unique_urls:
|
| 108 |
+
unique_urls.add(article['url'])
|
| 109 |
+
unique_articles.append(article)
|
| 110 |
+
|
| 111 |
+
return unique_articles
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# This function has been removed since Gemini is a cloud API service
|
| 115 |
+
# that does not require local caching - models are instantiated as needed
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def main():
|
| 119 |
+
"""Main function to run the fake news detection pipeline as a server."""
|
| 120 |
+
# Load environment variables
|
| 121 |
+
load_dotenv()
|
| 122 |
+
|
| 123 |
+
# Create Flask app
|
| 124 |
+
app = Flask(__name__, static_folder='static')
|
| 125 |
+
CORS(app) # Enable CORS for all routes
|
| 126 |
+
|
| 127 |
+
@app.route('/static/')
|
| 128 |
+
def index():
|
| 129 |
+
"""Serve the main page."""
|
| 130 |
+
return app.send_static_file('front.html')
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
@app.route('/api/detect', methods=['POST'])
|
| 134 |
+
def detect_fake_news():
|
| 135 |
+
"""API endpoint to check if news is potentially fake."""
|
| 136 |
+
# Start timing the request processing
|
| 137 |
+
start_time = time.time()
|
| 138 |
+
|
| 139 |
+
data = request.json
|
| 140 |
+
query = data.get('query', '')
|
| 141 |
+
|
| 142 |
+
if not query:
|
| 143 |
+
return jsonify({
|
| 144 |
+
"status": "error",
|
| 145 |
+
"message": "Please provide a news statement to verify."
|
| 146 |
+
})
|
| 147 |
+
|
| 148 |
+
# =====================================================
|
| 149 |
+
# 1. Input Handling
|
| 150 |
+
# =====================================================
|
| 151 |
+
# Generate three variations of the query using Gemini
|
| 152 |
+
query_variations = generate_query(query)
|
| 153 |
+
|
| 154 |
+
# Check if the query was flagged as inappropriate
|
| 155 |
+
if query_variations == ["INAPPROPRIATE_QUERY"]:
|
| 156 |
+
return jsonify({
|
| 157 |
+
"status": "error",
|
| 158 |
+
"message": "I cannot provide information on this topic as it appears to contain sensitive or inappropriate content."
|
| 159 |
+
})
|
| 160 |
+
|
| 161 |
+
# =====================================================
|
| 162 |
+
# 2. Data Fetching
|
| 163 |
+
# =====================================================
|
| 164 |
+
# Fetch articles from GDELT API for each query variation
|
| 165 |
+
all_articles = []
|
| 166 |
+
for query_var in query_variations:
|
| 167 |
+
articles = fetch_articles_from_gdelt(query_var)
|
| 168 |
+
if articles:
|
| 169 |
+
all_articles.extend(articles)
|
| 170 |
+
|
| 171 |
+
# Store unique articles in a set to ensure uniqueness
|
| 172 |
+
unique_articles = remove_duplicates(all_articles)
|
| 173 |
+
|
| 174 |
+
# Apply domain whitelist filtering if enabled in .env
|
| 175 |
+
use_whitelist_only = os.getenv('USE_WHITELIST_ONLY', 'false').lower() == 'true'
|
| 176 |
+
if use_whitelist_only:
|
| 177 |
+
print(f"Filtering articles to only include whitelisted domains...")
|
| 178 |
+
unique_articles = filter_by_whitelisted_domains(unique_articles)
|
| 179 |
+
print(f"After whitelist filtering: {len(unique_articles)} articles remain")
|
| 180 |
+
|
| 181 |
+
# Normalize the articles to a standard format
|
| 182 |
+
normalized_articles = normalize_gdelt_articles(unique_articles)
|
| 183 |
+
|
| 184 |
+
if not normalized_articles:
|
| 185 |
+
return jsonify(format_results(query, []))
|
| 186 |
+
|
| 187 |
+
# =====================================================
|
| 188 |
+
# 3. Embedding & Ranking
|
| 189 |
+
# =====================================================
|
| 190 |
+
# Initialize the ranker with model from environment variable
|
| 191 |
+
model_name = os.getenv('SIMILARITY_MODEL', 'intfloat/multilingual-e5-base')
|
| 192 |
+
|
| 193 |
+
# Use global ranker if it matches the requested model, otherwise create a new instance
|
| 194 |
+
if global_ranker.model_name == model_name:
|
| 195 |
+
ranker = global_ranker
|
| 196 |
+
else:
|
| 197 |
+
ranker = ArticleRanker(model_name)
|
| 198 |
+
|
| 199 |
+
# Get TOP_K_ARTICLES from .env file
|
| 200 |
+
TOP_K_ARTICLES = int(os.getenv('TOP_K_ARTICLES', 250))
|
| 201 |
+
min_threshold = float(os.getenv('MIN_SIMILARITY_THRESHOLD', 0.1))
|
| 202 |
+
|
| 203 |
+
# Prepare article texts for embedding
|
| 204 |
+
article_texts = [f"{article['title']} {article['description'] or ''}" for article in normalized_articles]
|
| 205 |
+
|
| 206 |
+
# Create embeddings and calculate similarities
|
| 207 |
+
query_embedding, article_embeddings = ranker.create_embeddings(query, article_texts)
|
| 208 |
+
similarities = ranker.calculate_similarities(query_embedding, article_embeddings)
|
| 209 |
+
|
| 210 |
+
# Get top articles based on similarity
|
| 211 |
+
top_indices = ranker.get_top_articles(similarities, normalized_articles, TOP_K_ARTICLES, min_threshold)
|
| 212 |
+
top_articles = ranker.format_results(top_indices, similarities, normalized_articles)
|
| 213 |
+
|
| 214 |
+
# =====================================================
|
| 215 |
+
# 4. Bias Categorization
|
| 216 |
+
# =====================================================
|
| 217 |
+
# Extract outlet names from the TOP_K_ARTICLES
|
| 218 |
+
# In top_articles, the source is already extracted as a string
|
| 219 |
+
outlet_names = [article['source'] for article in top_articles]
|
| 220 |
+
unique_outlets = list(set(outlet_names))
|
| 221 |
+
print(f"Analyzing {len(unique_outlets)} unique news outlets for bias...")
|
| 222 |
+
|
| 223 |
+
# Analyze bias using Gemini - send just the outlet names, not the whole articles
|
| 224 |
+
bias_analysis = bias_analyzer.analyze_bias(query, unique_outlets, GEMINI_MODEL)
|
| 225 |
+
|
| 226 |
+
# =====================================================
|
| 227 |
+
# 5. Category Embeddings
|
| 228 |
+
# =====================================================
|
| 229 |
+
print("\n" + "=" * 80)
|
| 230 |
+
print("EMBEDDING VECTORS BY BIAS CATEGORY")
|
| 231 |
+
print("=" * 80)
|
| 232 |
+
|
| 233 |
+
# Create embedding vectors for each bias category
|
| 234 |
+
# 1. Group articles based on their outlet's bias category
|
| 235 |
+
# 2. Create an embedding vector for each category using ONLY article titles
|
| 236 |
+
# 3. Rank articles within each category by similarity to query
|
| 237 |
+
category_rankings = bias_analyzer.categorize_and_rank_by_bias(
|
| 238 |
+
query, normalized_articles, bias_analysis, ranker, min_threshold
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# =====================================================
|
| 242 |
+
# 6. Top N Selection per Category
|
| 243 |
+
# =====================================================
|
| 244 |
+
# Get TOP_N_PER_CATEGORY from .env file (default: 5)
|
| 245 |
+
TOP_N_PER_CATEGORY = int(os.getenv('TOP_N_PER_CATEGORY', 5))
|
| 246 |
+
|
| 247 |
+
# Get total counts of articles per category before filtering
|
| 248 |
+
category_article_counts = {
|
| 249 |
+
category: len(articles)
|
| 250 |
+
for category, articles in category_rankings.items()
|
| 251 |
+
if category not in ["descriptions", "reasoning"]
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
# For each bias category, select the top N articles
|
| 255 |
+
# These are the most relevant articles within each bias perspective
|
| 256 |
+
filtered_category_rankings = {}
|
| 257 |
+
for category, articles in category_rankings.items():
|
| 258 |
+
# Skip non-category keys like "descriptions" or "reasoning"
|
| 259 |
+
if category in ["descriptions", "reasoning"]:
|
| 260 |
+
continue
|
| 261 |
+
|
| 262 |
+
filtered_category_rankings[category] = articles[:TOP_N_PER_CATEGORY]
|
| 263 |
+
|
| 264 |
+
# Only print if there are articles in this category
|
| 265 |
+
if len(filtered_category_rankings[category]) > 0:
|
| 266 |
+
print(f"\n===== Top {len(filtered_category_rankings[category])} articles from {category} category =====")
|
| 267 |
+
|
| 268 |
+
# Print detailed information about each selected article
|
| 269 |
+
for i, article in enumerate(filtered_category_rankings[category], 1):
|
| 270 |
+
print(f"Article #{i}:")
|
| 271 |
+
print(f" Title: {article['title']}")
|
| 272 |
+
print(f" Source: {article['source']}")
|
| 273 |
+
print(f" Similarity Score: {article['similarity_score']:.4f}")
|
| 274 |
+
print(f" Rank: {article['rank']}")
|
| 275 |
+
print(f" URL: {article['url']}")
|
| 276 |
+
print(f" Published: {article['published_at']}")
|
| 277 |
+
print("-" * 50)
|
| 278 |
+
|
| 279 |
+
# =====================================================
|
| 280 |
+
# 7. Summarization
|
| 281 |
+
# =====================================================
|
| 282 |
+
# Generate summary from articles in all categories
|
| 283 |
+
print("\nGenerating factual summary using top articles from all categories...")
|
| 284 |
+
|
| 285 |
+
# Pass the original bias_analysis to include the reasoning in the summary
|
| 286 |
+
# We need to add the reasoning to filtered_category_rankings since that's what gets passed to generate_summary
|
| 287 |
+
filtered_category_rankings["reasoning"] = bias_analysis.get("reasoning", "No reasoning provided")
|
| 288 |
+
|
| 289 |
+
# Call the bias_analyzer's generate_summary function with articles from all categories
|
| 290 |
+
summary = bias_analyzer.generate_summary(
|
| 291 |
+
query,
|
| 292 |
+
normalized_articles,
|
| 293 |
+
filtered_category_rankings,
|
| 294 |
+
GEMINI_MODEL
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# Print the summary to terminal (already includes its own formatting)
|
| 298 |
+
print(summary)
|
| 299 |
+
|
| 300 |
+
# Prepare response with only the summary and reasoning
|
| 301 |
+
result = {
|
| 302 |
+
"query": query,
|
| 303 |
+
"summary": summary,
|
| 304 |
+
"reasoning": bias_analysis.get("reasoning", "No reasoning provided")
|
| 305 |
+
}
|
| 306 |
+
|
| 307 |
+
return jsonify(result)
|
| 308 |
+
|
| 309 |
+
@app.route('/api/health', methods=['GET'])
|
| 310 |
+
def health_check():
|
| 311 |
+
"""API endpoint to check if the server is running."""
|
| 312 |
+
return jsonify({
|
| 313 |
+
"status": "ok",
|
| 314 |
+
"message": "Fake News Detection API is running"
|
| 315 |
+
})
|
| 316 |
+
|
| 317 |
+
# Get port from environment variable or use default 5000
|
| 318 |
+
port = int(os.getenv('PORT', 5000))
|
| 319 |
+
debug = os.getenv('DEBUG', 'false').lower() == 'true'
|
| 320 |
+
|
| 321 |
+
print(f"Starting Fake News Detection API server on port {port}...")
|
| 322 |
+
# Start the Flask server
|
| 323 |
+
app.run(host='0.0.0.0', port=port, debug=debug)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
if __name__ == "__main__":
|
| 327 |
+
main()
|
misinformationui/static/script.js
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
const chat = document.getElementById('chat');
|
| 2 |
+
const input = document.getElementById('query');
|
| 3 |
+
const sendBtn = document.getElementById('sendBtn');
|
| 4 |
+
|
| 5 |
+
function addMessage(text, sender, isPre = false) {
|
| 6 |
+
const msg = document.createElement('div');
|
| 7 |
+
msg.classList.add('message', sender);
|
| 8 |
+
|
| 9 |
+
// Add special class for pre-formatted messages to style them properly
|
| 10 |
+
if (isPre) {
|
| 11 |
+
msg.classList.add('pre-formatted');
|
| 12 |
+
|
| 13 |
+
// For pre-formatted text (terminal output)
|
| 14 |
+
const pre = document.createElement('pre');
|
| 15 |
+
pre.textContent = text;
|
| 16 |
+
|
| 17 |
+
// No inline styles - all styling comes from CSS
|
| 18 |
+
msg.appendChild(pre);
|
| 19 |
+
} else {
|
| 20 |
+
msg.textContent = text;
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
chat.appendChild(msg);
|
| 24 |
+
|
| 25 |
+
// Smooth scroll to new message
|
| 26 |
+
setTimeout(() => {
|
| 27 |
+
msg.scrollIntoView({ behavior: 'smooth', block: 'end' });
|
| 28 |
+
}, 100);
|
| 29 |
+
|
| 30 |
+
return msg;
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
async function sendMessage() {
|
| 34 |
+
const query = input.value.trim();
|
| 35 |
+
if (!query) return;
|
| 36 |
+
|
| 37 |
+
const bg = document.getElementById('chat-background');
|
| 38 |
+
if (bg && !bg.classList.contains('blurred')) {
|
| 39 |
+
bg.classList.add('blurred');
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
addMessage(query, 'user');
|
| 43 |
+
input.value = '';
|
| 44 |
+
|
| 45 |
+
const loader = addMessage('Processing...', 'bot');
|
| 46 |
+
|
| 47 |
+
try {
|
| 48 |
+
const response = await fetch('/api/detect', {
|
| 49 |
+
method: 'POST',
|
| 50 |
+
headers: { 'Content-Type': 'application/json' },
|
| 51 |
+
body: JSON.stringify({ query: query })
|
| 52 |
+
});
|
| 53 |
+
|
| 54 |
+
const data = await response.json();
|
| 55 |
+
loader.remove();
|
| 56 |
+
|
| 57 |
+
if (data && data.summary) {
|
| 58 |
+
// Display summary exactly as it comes from the backend
|
| 59 |
+
addMessage(data.summary, 'bot', true); // scrollable <pre> block
|
| 60 |
+
} else {
|
| 61 |
+
addMessage("Could not generate a summary.", 'bot');
|
| 62 |
+
}
|
| 63 |
+
} catch (e) {
|
| 64 |
+
loader.remove();
|
| 65 |
+
addMessage("Error checking news.", 'bot');
|
| 66 |
+
}
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
function formatBackendData(data) {
|
| 70 |
+
// If we have a summary, only display that
|
| 71 |
+
if (data && data.summary) {
|
| 72 |
+
if (typeof data.summary === 'string') {
|
| 73 |
+
return data.summary;
|
| 74 |
+
} else if (typeof data.summary === 'object' && data.summary.text) {
|
| 75 |
+
return data.summary.text;
|
| 76 |
+
} else {
|
| 77 |
+
return JSON.stringify(data.summary, null, 2);
|
| 78 |
+
}
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
// If no summary is available, return null so we can fall back to showing basic results
|
| 82 |
+
return null;
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
sendBtn.addEventListener('click', sendMessage);
|
| 86 |
+
input.addEventListener('keypress', (e) => {
|
| 87 |
+
if (e.key === 'Enter') sendMessage();
|
| 88 |
+
});
|
misinformationui/static/style.css
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
body {
|
| 2 |
+
font-family: Arial, sans-serif;
|
| 3 |
+
margin: 0;
|
| 4 |
+
padding: 0;
|
| 5 |
+
height: 100vh;
|
| 6 |
+
display: flex;
|
| 7 |
+
flex-direction: column;
|
| 8 |
+
overflow: hidden;
|
| 9 |
+
}
|
| 10 |
+
|
| 11 |
+
/* Blurred background image */
|
| 12 |
+
body::before {
|
| 13 |
+
content: "";
|
| 14 |
+
position: fixed;
|
| 15 |
+
top: 0;
|
| 16 |
+
left: 0;
|
| 17 |
+
width: 100vw;
|
| 18 |
+
height: 100vh;
|
| 19 |
+
z-index: -1;
|
| 20 |
+
background: rgb(23, 23, 23);
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
.chat-container {
|
| 24 |
+
flex: 1;
|
| 25 |
+
display: flex;
|
| 26 |
+
flex-direction: column;
|
| 27 |
+
padding: 15px;
|
| 28 |
+
overflow-y: auto;
|
| 29 |
+
overflow-x: hidden; /* prevent horizontal scrolling */
|
| 30 |
+
margin-bottom: 70px;
|
| 31 |
+
background: transparent;
|
| 32 |
+
width: 100%;
|
| 33 |
+
max-width: 95%; /* wider to accommodate terminal output */
|
| 34 |
+
margin-left: auto; /* center align */
|
| 35 |
+
margin-right: auto; /* center align */
|
| 36 |
+
scroll-behavior: smooth; /* Smooth scrolling */
|
| 37 |
+
height: calc(100vh - 70px); /* Full height minus input area */
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
.message {
|
| 41 |
+
width: fit-content; /* shrink to text */
|
| 42 |
+
max-width: 100%; /* allow full width for terminal output */
|
| 43 |
+
margin-bottom: 12px;
|
| 44 |
+
padding: 12px 15px;
|
| 45 |
+
border-radius: 15px;
|
| 46 |
+
line-height: 1.4;
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
/* Special styling for bot messages with pre-formatted text */
|
| 50 |
+
.message.bot.pre-formatted {
|
| 51 |
+
width: 100%; /* full width for terminal output */
|
| 52 |
+
max-width: 100%; /* no width restriction */
|
| 53 |
+
white-space: pre-wrap; /* wrap text to prevent horizontal scroll */
|
| 54 |
+
overflow-wrap: break-word; /* break long words if needed */
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
.user {
|
| 58 |
+
align-self: flex-end; /* right side */
|
| 59 |
+
background: #414141;
|
| 60 |
+
color: #fff;
|
| 61 |
+
border-bottom-right-radius: 5px;
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
.bot {
|
| 65 |
+
align-self: flex-start; /* left side */
|
| 66 |
+
background: transparent;
|
| 67 |
+
color: #ffffff;
|
| 68 |
+
border-bottom-left-radius: 5px;
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
/* Terminal output style - matching exactly what appears in the terminal */
|
| 72 |
+
.message.bot pre {
|
| 73 |
+
font-family: monospace;
|
| 74 |
+
background-color: transparent; /* No background color */
|
| 75 |
+
color: inherit; /* Use the same text color as the parent */
|
| 76 |
+
padding: 0;
|
| 77 |
+
border: none;
|
| 78 |
+
width: 100%;
|
| 79 |
+
max-height: none; /* No height limit */
|
| 80 |
+
overflow-x: visible; /* No horizontal scrolling */
|
| 81 |
+
white-space: pre-wrap; /* Wrap text to prevent horizontal scrolling */
|
| 82 |
+
font-size: inherit;
|
| 83 |
+
line-height: 1.4;
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
.input-area {
|
| 89 |
+
position: fixed;
|
| 90 |
+
bottom: 1rem;
|
| 91 |
+
left: 50%;
|
| 92 |
+
transform: translateX(-50%);
|
| 93 |
+
width: 100%;
|
| 94 |
+
max-width: 95%; /* Match the width of chat container */
|
| 95 |
+
display: flex;
|
| 96 |
+
padding: 10px;
|
| 97 |
+
background: rgba(54, 54, 54, 0.7); /* make input area semi-transparent */
|
| 98 |
+
box-shadow: 0 -2px 5px rgba(0,0,0,0.05);
|
| 99 |
+
border-radius: 30px;
|
| 100 |
+
z-index: 10; /* Ensure input stays on top */
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
.input-area input {
|
| 104 |
+
flex: 1;
|
| 105 |
+
padding: 14px 18px;
|
| 106 |
+
border: 1px solid #1b1b1b;
|
| 107 |
+
box-shadow: #414141;
|
| 108 |
+
border-radius: 25px;
|
| 109 |
+
outline: none;
|
| 110 |
+
font-size: 1rem;
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
.input-area button {
|
| 114 |
+
margin-left: 10px;
|
| 115 |
+
padding: 0 20px;
|
| 116 |
+
border: none;
|
| 117 |
+
background: #1f1f1f;
|
| 118 |
+
color: white;
|
| 119 |
+
border-radius: 25px;
|
| 120 |
+
cursor: pointer;
|
| 121 |
+
font-size: 1rem;
|
| 122 |
+
transition: background 0.2s ease;
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
.input-area button:hover {
|
| 126 |
+
background: #6a6a6a;
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
.loader {
|
| 130 |
+
font-size: 0.9rem;
|
| 131 |
+
color: gray;
|
| 132 |
+
margin: 5px 0;
|
| 133 |
+
}
|
| 134 |
+
.chat-background{
|
| 135 |
+
position: fixed;
|
| 136 |
+
font-family: 'Courier New', Courier, monospace;
|
| 137 |
+
top: 40%;
|
| 138 |
+
left: 50%;
|
| 139 |
+
transform: translate(-50%, -50%);
|
| 140 |
+
font-weight: bold;
|
| 141 |
+
color: rgba(255, 255, 255, 0.8); /* semi-transparent */
|
| 142 |
+
text-align: center;
|
| 143 |
+
z-index: 0; /* below chat messages */
|
| 144 |
+
pointer-events: none; /* makes it "untouchable" */
|
| 145 |
+
transition: all 0.4s ease;
|
| 146 |
+
}
|
| 147 |
+
.chat-background{
|
| 148 |
+
display: inline-block;
|
| 149 |
+
text-align: left;
|
| 150 |
+
}
|
| 151 |
+
.chat-background #p1 {
|
| 152 |
+
font-size: 4rem;
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
.chat-background #p2 {
|
| 156 |
+
font-size: 3rem;
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
/* When blurred */
|
| 160 |
+
.chat-background.blurred {
|
| 161 |
+
filter: blur(12px); /* strong blur */
|
| 162 |
+
opacity: 0.4; /* fade slightly for readability */
|
| 163 |
+
transition: all 0.4s ease;
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
@media (max-width: 600px) {
|
| 167 |
+
.message {
|
| 168 |
+
max-width: 85%;
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
.chat-container {
|
| 172 |
+
padding: 10px;
|
| 173 |
+
max-width: 100%;
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
.input-area {
|
| 177 |
+
max-width: 95%;
|
| 178 |
+
bottom: 0.5rem;
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
.chat-background #p1 {
|
| 182 |
+
font-size: 3rem;
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
.chat-background #p2 {
|
| 186 |
+
font-size: 2rem;
|
| 187 |
+
}
|
| 188 |
+
}
|
misinformationui/static/test_server.py
ADDED
|
File without changes
|