Spaces:
Running
Running
| from functools import partial | |
| from typing import List, Optional, Union | |
| from einops import rearrange, repeat | |
| import copy | |
| from ...modules.diffusionmodules.openaimodel import * | |
| from ...modules.video_attention import SpatialVideoTransformer | |
| from ...modules.diffusionmodules.model import FaceLocator | |
| from ...util import default | |
| from .util import AlphaBlender | |
| class VideoResBlock(ResBlock): | |
| def __init__( | |
| self, | |
| channels: int, | |
| emb_channels: int, | |
| dropout: float, | |
| video_kernel_size: Union[int, List[int]] = 3, | |
| merge_strategy: str = "fixed", | |
| merge_factor: float = 0.5, | |
| out_channels: Optional[int] = None, | |
| use_conv: bool = False, | |
| use_scale_shift_norm: bool = False, | |
| dims: int = 2, | |
| use_checkpoint: bool = False, | |
| up: bool = False, | |
| down: bool = False, | |
| skip_time: bool = False, | |
| ): | |
| super().__init__( | |
| channels, | |
| emb_channels, | |
| dropout, | |
| out_channels=out_channels, | |
| use_conv=use_conv, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| up=up, | |
| down=down, | |
| ) | |
| self.time_stack = ResBlock( | |
| default(out_channels, channels), | |
| emb_channels, | |
| dropout=dropout, | |
| dims=3, | |
| out_channels=default(out_channels, channels), | |
| use_scale_shift_norm=False, | |
| use_conv=False, | |
| up=False, | |
| down=False, | |
| kernel_size=video_kernel_size, | |
| use_checkpoint=use_checkpoint, | |
| exchange_temb_dims=True, | |
| ) | |
| self.time_mixer = AlphaBlender( | |
| alpha=merge_factor, | |
| merge_strategy=merge_strategy, | |
| rearrange_pattern="b t -> b 1 t 1 1", | |
| ) | |
| self.skip_time = skip_time | |
| def forward( | |
| self, | |
| x: th.Tensor, | |
| emb: th.Tensor, | |
| num_video_frames: int, | |
| image_only_indicator: Optional[th.Tensor] = None, | |
| ) -> th.Tensor: | |
| x = super().forward(x, emb) | |
| if self.skip_time: | |
| return x | |
| x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) | |
| x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) | |
| x = self.time_stack( | |
| x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames) | |
| ) | |
| x = self.time_mixer( | |
| x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator | |
| ) | |
| x = rearrange(x, "b c t h w -> (b t) c h w") | |
| return x | |
| class VideoUNet(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| model_channels: int, | |
| out_channels: int, | |
| num_res_blocks: int, | |
| attention_resolutions: int, | |
| dropout: float = 0.0, | |
| channel_mult: List[int] = (1, 2, 4, 8), | |
| conv_resample: bool = True, | |
| dims: int = 2, | |
| num_classes: Optional[int] = None, | |
| use_checkpoint: bool = False, | |
| num_heads: int = -1, | |
| num_head_channels: int = -1, | |
| num_heads_upsample: int = -1, | |
| use_scale_shift_norm: bool = False, | |
| resblock_updown: bool = False, | |
| transformer_depth: Union[List[int], int] = 1, | |
| transformer_depth_middle: Optional[int] = None, | |
| context_dim: Optional[int] = None, | |
| time_downup: bool = False, | |
| time_context_dim: Optional[int] = None, | |
| extra_ff_mix_layer: bool = False, | |
| use_spatial_context: bool = False, | |
| merge_strategy: str = "fixed", | |
| merge_factor: float = 0.5, | |
| spatial_transformer_attn_type: str = "softmax", | |
| video_kernel_size: Union[int, List[int]] = 3, | |
| use_linear_in_transformer: bool = False, | |
| adm_in_channels: Optional[int] = None, | |
| disable_temporal_crossattention: bool = False, | |
| max_ddpm_temb_period: int = 10000, | |
| fine_tuning_method: str = None, | |
| unfreeze_blocks: Optional[List[str]] = None, | |
| adapter_kwargs: Optional[dict] = {}, | |
| audio_cond_method: str = None, | |
| audio_dim: Optional[int] = 0, | |
| additional_audio_frames: Optional[int] = 0, | |
| skip_time: bool = False, | |
| use_ada_aug: bool = False, | |
| encode_landmarks: bool = False, | |
| reference_to: str = None, | |
| ): | |
| super().__init__() | |
| assert context_dim is not None | |
| if num_heads_upsample == -1: | |
| num_heads_upsample = num_heads | |
| if num_heads == -1: | |
| assert num_head_channels != -1 | |
| if num_head_channels == -1: | |
| assert num_heads != -1 | |
| self.additional_audio_frames = additional_audio_frames | |
| audio_multiplier = additional_audio_frames * 2 + 1 | |
| audio_dim = audio_dim * audio_multiplier | |
| self.audio_is_context = "both" in audio_cond_method | |
| if "both" == audio_cond_method: | |
| audio_cond_method = "to_time_emb_image" | |
| elif "both_keyframes" == audio_cond_method: | |
| audio_cond_method = "to_time_emb" | |
| if "to_time_emb" in audio_cond_method: | |
| adm_in_channels += audio_dim | |
| print(adm_in_channels, audio_dim, audio_cond_method) | |
| self.adapter = None | |
| self.audio_cond_method = audio_cond_method | |
| self.in_channels = in_channels | |
| self.model_channels = model_channels | |
| self.out_channels = out_channels | |
| if isinstance(transformer_depth, int): | |
| transformer_depth = len(channel_mult) * [transformer_depth] | |
| transformer_depth_middle = default( | |
| transformer_depth_middle, transformer_depth[-1] | |
| ) | |
| self.num_res_blocks = num_res_blocks | |
| self.attention_resolutions = attention_resolutions | |
| self.dropout = dropout | |
| self.channel_mult = channel_mult | |
| self.conv_resample = conv_resample | |
| self.num_classes = num_classes | |
| self.use_checkpoint = use_checkpoint | |
| self.num_heads = num_heads | |
| self.num_head_channels = num_head_channels | |
| self.num_heads_upsample = num_heads_upsample | |
| time_embed_dim = model_channels * 4 | |
| self.time_embed = nn.Sequential( | |
| linear(model_channels, time_embed_dim), | |
| nn.SiLU(), | |
| linear(time_embed_dim, time_embed_dim), | |
| ) | |
| self.use_ada_aug = use_ada_aug | |
| if use_ada_aug: | |
| self.map_aug = linear(9, time_embed_dim) | |
| if self.num_classes is not None: | |
| if isinstance(self.num_classes, int): | |
| self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
| elif self.num_classes == "continuous": | |
| print("setting up linear c_adm embedding layer") | |
| self.label_emb = nn.Linear(1, time_embed_dim) | |
| elif self.num_classes == "timestep": | |
| self.label_emb = nn.Sequential( | |
| Timestep(model_channels), | |
| nn.Sequential( | |
| linear(model_channels, time_embed_dim), | |
| nn.SiLU(), | |
| linear(time_embed_dim, time_embed_dim), | |
| ), | |
| ) | |
| elif self.num_classes == "sequential": | |
| if adm_in_channels > 0: | |
| assert adm_in_channels is not None | |
| self.label_emb = nn.Sequential( | |
| nn.Sequential( | |
| linear(adm_in_channels, time_embed_dim), | |
| nn.SiLU(), | |
| linear(time_embed_dim, time_embed_dim), | |
| ) | |
| ) | |
| else: | |
| # Disabling the label embedding | |
| self.num_classes = None | |
| else: | |
| raise ValueError() | |
| self.encode_landmarks = encode_landmarks | |
| if encode_landmarks: | |
| self.face_locator = FaceLocator( | |
| 320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256) | |
| ) | |
| self.input_blocks = nn.ModuleList( | |
| [ | |
| TimestepEmbedSequential( | |
| conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
| ) | |
| ] | |
| ) | |
| self._feature_size = model_channels | |
| input_block_chans = [model_channels] | |
| ch = model_channels | |
| ds = 1 | |
| def get_attention_layer( | |
| ch, | |
| num_heads, | |
| dim_head, | |
| depth=1, | |
| context_dim=None, | |
| use_checkpoint=False, | |
| disabled_sa=False, | |
| audio_context_dim=None, | |
| ): | |
| return SpatialVideoTransformer( | |
| ch, | |
| num_heads, | |
| dim_head, | |
| depth=depth, | |
| context_dim=context_dim, | |
| audio_context_dim=audio_context_dim, | |
| time_context_dim=time_context_dim, | |
| dropout=dropout, | |
| ff_in=extra_ff_mix_layer, | |
| use_spatial_context=use_spatial_context, | |
| merge_strategy=merge_strategy, | |
| merge_factor=merge_factor, | |
| checkpoint=use_checkpoint, | |
| use_linear=use_linear_in_transformer, | |
| attn_mode=spatial_transformer_attn_type, | |
| disable_self_attn=disabled_sa, | |
| disable_temporal_crossattention=disable_temporal_crossattention, | |
| max_time_embed_period=max_ddpm_temb_period, | |
| skip_time=skip_time, | |
| reference_to=reference_to, | |
| ) | |
| def get_resblock( | |
| merge_factor, | |
| merge_strategy, | |
| video_kernel_size, | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_ch, | |
| dims, | |
| use_checkpoint, | |
| use_scale_shift_norm, | |
| down=False, | |
| up=False, | |
| ): | |
| return VideoResBlock( | |
| merge_factor=merge_factor, | |
| merge_strategy=merge_strategy, | |
| video_kernel_size=video_kernel_size, | |
| channels=ch, | |
| emb_channels=time_embed_dim, | |
| dropout=dropout, | |
| out_channels=out_ch, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| down=down, | |
| up=up, | |
| skip_time=skip_time, | |
| ) | |
| for level, mult in enumerate(channel_mult): | |
| for _ in range(num_res_blocks): | |
| layers = [ | |
| get_resblock( | |
| merge_factor=merge_factor, | |
| merge_strategy=merge_strategy, | |
| video_kernel_size=video_kernel_size, | |
| ch=ch, | |
| time_embed_dim=time_embed_dim, | |
| dropout=dropout, | |
| out_ch=mult * model_channels, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ) | |
| ] | |
| ch = mult * model_channels | |
| if ds in attention_resolutions: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| layers.append( | |
| get_attention_layer( | |
| ch, | |
| num_heads, | |
| dim_head, | |
| depth=transformer_depth[level], | |
| context_dim=context_dim, | |
| audio_context_dim=audio_dim | |
| if "cross_attention" in audio_cond_method | |
| else None, | |
| use_checkpoint=use_checkpoint, | |
| disabled_sa=False, | |
| ) | |
| ) | |
| self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
| self._feature_size += ch | |
| input_block_chans.append(ch) | |
| if level != len(channel_mult) - 1: | |
| ds *= 2 | |
| out_ch = ch | |
| self.input_blocks.append( | |
| TimestepEmbedSequential( | |
| get_resblock( | |
| merge_factor=merge_factor, | |
| merge_strategy=merge_strategy, | |
| video_kernel_size=video_kernel_size, | |
| ch=ch, | |
| time_embed_dim=time_embed_dim, | |
| dropout=dropout, | |
| out_ch=out_ch, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| down=True, | |
| ) | |
| if resblock_updown | |
| else Downsample( | |
| ch, | |
| conv_resample, | |
| dims=dims, | |
| out_channels=out_ch, | |
| third_down=time_downup, | |
| ) | |
| ) | |
| ) | |
| ch = out_ch | |
| input_block_chans.append(ch) | |
| self._feature_size += ch | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| self.middle_block = TimestepEmbedSequential( | |
| get_resblock( | |
| merge_factor=merge_factor, | |
| merge_strategy=merge_strategy, | |
| video_kernel_size=video_kernel_size, | |
| ch=ch, | |
| time_embed_dim=time_embed_dim, | |
| out_ch=None, | |
| dropout=dropout, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ), | |
| get_attention_layer( | |
| ch, | |
| num_heads, | |
| dim_head, | |
| depth=transformer_depth_middle, | |
| context_dim=context_dim, | |
| audio_context_dim=audio_dim | |
| if "new_cross_attention" in audio_cond_method | |
| else None, | |
| use_checkpoint=use_checkpoint, | |
| ), | |
| get_resblock( | |
| merge_factor=merge_factor, | |
| merge_strategy=merge_strategy, | |
| video_kernel_size=video_kernel_size, | |
| ch=ch, | |
| out_ch=None, | |
| time_embed_dim=time_embed_dim, | |
| dropout=dropout, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ), | |
| ) | |
| self._feature_size += ch | |
| self.output_blocks = nn.ModuleList([]) | |
| for level, mult in list(enumerate(channel_mult))[::-1]: | |
| for i in range(num_res_blocks + 1): | |
| ich = input_block_chans.pop() | |
| layers = [ | |
| get_resblock( | |
| merge_factor=merge_factor, | |
| merge_strategy=merge_strategy, | |
| video_kernel_size=video_kernel_size, | |
| ch=ch + ich, | |
| time_embed_dim=time_embed_dim, | |
| dropout=dropout, | |
| out_ch=model_channels * mult, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ) | |
| ] | |
| ch = model_channels * mult | |
| if ds in attention_resolutions: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| layers.append( | |
| get_attention_layer( | |
| ch, | |
| num_heads, | |
| dim_head, | |
| depth=transformer_depth[level], | |
| context_dim=context_dim, | |
| audio_context_dim=audio_dim | |
| if "new_cross_attention" == audio_cond_method | |
| else None, | |
| use_checkpoint=use_checkpoint, | |
| disabled_sa=False, | |
| ) | |
| ) | |
| if level and i == num_res_blocks: | |
| out_ch = ch | |
| ds //= 2 | |
| layers.append( | |
| get_resblock( | |
| merge_factor=merge_factor, | |
| merge_strategy=merge_strategy, | |
| video_kernel_size=video_kernel_size, | |
| ch=ch, | |
| time_embed_dim=time_embed_dim, | |
| dropout=dropout, | |
| out_ch=out_ch, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| up=True, | |
| ) | |
| if resblock_updown | |
| else Upsample( | |
| ch, | |
| conv_resample, | |
| dims=dims, | |
| out_channels=out_ch, | |
| third_up=time_downup, | |
| ) | |
| ) | |
| self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
| self._feature_size += ch | |
| self.out = nn.Sequential( | |
| normalization(ch), | |
| nn.SiLU(), | |
| zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | |
| ) | |
| if fine_tuning_method is not None: | |
| # Freeze everything except the adapter | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| if self.adapter is not None: | |
| for param in self.adapter.parameters(): | |
| param.requires_grad = True | |
| if len(unfreeze_blocks): | |
| if "input" in unfreeze_blocks: | |
| for param in self.input_blocks[0].parameters(): | |
| param.requires_grad = True | |
| # break # only unfreeze the first input block | |
| if "label_emb" in unfreeze_blocks: | |
| for param in self.label_emb.parameters(): | |
| param.requires_grad = True | |
| def get_skip_attention_at( | |
| self, | |
| skip_attention_at: List[int], | |
| curr_layer: int, | |
| batch_size: int, | |
| num_video_frames: int, | |
| ): | |
| if skip_attention_at is None: | |
| return None | |
| skip_attention = th.zeros(len(skip_attention_at), 1, dtype=th.bool) | |
| for i, layer in enumerate(skip_attention_at): | |
| skip_attention[i] = layer == curr_layer | |
| skip_attention = repeat( | |
| skip_attention, "b ... -> (b t) ...", t=num_video_frames | |
| ) | |
| assert skip_attention.shape[0] == batch_size, ( | |
| f"{skip_attention.shape[0]} != {batch_size}" | |
| ) | |
| return skip_attention | |
| def forward( | |
| self, | |
| x: th.Tensor, | |
| timesteps: th.Tensor, | |
| context: Optional[th.Tensor] = None, | |
| reference_context: Optional[th.Tensor] = None, | |
| y: Optional[th.Tensor] = None, | |
| audio_emb: Optional[th.Tensor] = None, | |
| landmarks: Optional[th.Tensor] = None, | |
| aug_labels: Optional[th.Tensor] = None, | |
| time_context: Optional[th.Tensor] = None, | |
| num_video_frames: Optional[int] = 1, | |
| image_only_indicator: Optional[th.Tensor] = None, | |
| skip_spatial_attention_at: Optional[List[int]] = None, | |
| skip_temporal_attention_at: Optional[List[int]] = None, | |
| ): | |
| if self.audio_is_context: | |
| assert audio_emb is None | |
| audio_emb = context.clone() | |
| curr_context_idx = 0 | |
| num_video_frames = ( | |
| num_video_frames | |
| if isinstance(num_video_frames, int) | |
| else num_video_frames[0] | |
| ) | |
| if reference_context is not None: | |
| copy_context = copy.deepcopy(reference_context) | |
| mid = copy_context.pop(-1) | |
| copy_context.insert((len(copy_context) // 2) - 1, mid) | |
| reference_context = copy_context | |
| curr_context_idx = 0 | |
| if num_video_frames > 1: | |
| reference_context = [ | |
| repeat(ref_context, "b h w -> (b t) h w", t=num_video_frames) | |
| for ref_context in reference_context | |
| ] | |
| or_batch_size = x.shape[0] // num_video_frames | |
| if ( | |
| image_only_indicator is not None | |
| and image_only_indicator.shape[0] != or_batch_size | |
| ): | |
| # TODO: fix this | |
| image_only_indicator = repeat( | |
| image_only_indicator, "b ... -> (b t) ...", t=2 | |
| ) | |
| if context is not None and x.shape[0] != context.shape[0]: | |
| context = repeat(context, "b ... -> b t ...", t=num_video_frames) | |
| context = rearrange(context, "b t ... -> (b t) ...", t=num_video_frames) | |
| if "cross_attention" in self.audio_cond_method: | |
| assert audio_emb is not None | |
| if audio_emb.ndim == 4: | |
| audio_emb = rearrange(audio_emb, "b t d c -> b (t d) c") | |
| # context = th.cat([context, audio_emb], dim=1) | |
| if self.audio_cond_method == "cross_time": | |
| assert audio_emb is not None | |
| time_context = audio_emb | |
| if y is not None and y.shape[0] != x.shape[0]: | |
| y = repeat(y, "b ... -> b t ...", t=num_video_frames) | |
| y = rearrange(y, "b t ... -> (b t) ...", t=num_video_frames) | |
| hs = [] | |
| t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
| emb = self.time_embed(t_emb) | |
| if self.num_classes is not None: | |
| assert y is not None or "to_time_emb" in self.audio_cond_method | |
| if self.audio_cond_method == "to_time_emb": | |
| assert audio_emb is not None | |
| audio_emb = rearrange(audio_emb, "b t c -> (b t) c") | |
| if y is not None: | |
| y = th.cat([y, audio_emb], dim=1) | |
| else: | |
| y = audio_emb | |
| elif self.audio_cond_method == "to_time_emb_image": | |
| assert audio_emb is not None | |
| audio_emb = rearrange(audio_emb, "b t c -> b (t c)") | |
| if y is not None: | |
| y = th.cat([y, audio_emb], dim=1) | |
| else: | |
| y = audio_emb | |
| assert y.shape[0] == x.shape[0], ( | |
| f"{y.shape} != {x.shape} and audio_emb.shape: {audio_emb.shape}" | |
| ) | |
| emb = emb + self.label_emb(y) | |
| if self.use_ada_aug: | |
| assert aug_labels is not None, ( | |
| "must provide aug_labels if use_ada_aug is True" | |
| ) | |
| emb = emb + self.map_aug(aug_labels) | |
| h = x | |
| if self.encode_landmarks: | |
| landmarks_emb = self.face_locator(landmarks) | |
| landmarks_emb = rearrange(landmarks_emb, "b c t h w -> (b t) c h w") | |
| # print("landmarks_emb:", landmarks_emb.shape) | |
| for i, module in enumerate(self.input_blocks): | |
| # print(image_only_indicator.shape, num_video_frames, h.shape) | |
| if i == 1 and self.encode_landmarks: | |
| h = h + landmarks_emb | |
| # print("h.shape:", h.shape, i) | |
| skip_spatial_attention = self.get_skip_attention_at( | |
| skip_spatial_attention_at, | |
| curr_context_idx, | |
| x.shape[0], | |
| num_video_frames, | |
| ) | |
| skip_temporal_attention = self.get_skip_attention_at( | |
| skip_temporal_attention_at, | |
| curr_context_idx, | |
| x.shape[0], | |
| num_video_frames, | |
| ) | |
| h, is_attention = module( | |
| h, | |
| emb, | |
| context=context, | |
| reference_context=reference_context[curr_context_idx] | |
| if reference_context is not None | |
| else None, | |
| audio_context=audio_emb | |
| if "cross_attention" in self.audio_cond_method | |
| else None, | |
| image_only_indicator=image_only_indicator, | |
| time_context=time_context, | |
| num_video_frames=num_video_frames, | |
| skip_spatial_attention=skip_spatial_attention, | |
| skip_temporal_attention=skip_temporal_attention, | |
| ) | |
| if is_attention: | |
| curr_context_idx = ( | |
| None if curr_context_idx is None else curr_context_idx + 1 | |
| ) | |
| hs.append(h) | |
| skip_spatial_attention = self.get_skip_attention_at( | |
| skip_spatial_attention_at, curr_context_idx, x.shape[0], num_video_frames | |
| ) | |
| skip_temporal_attention = self.get_skip_attention_at( | |
| skip_temporal_attention_at, curr_context_idx, x.shape[0], num_video_frames | |
| ) | |
| h, is_attention = self.middle_block( | |
| h, | |
| emb, | |
| context=context, | |
| reference_context=reference_context[curr_context_idx] | |
| if reference_context is not None | |
| else None, | |
| audio_context=audio_emb | |
| if "cross_attention" in self.audio_cond_method | |
| else None, | |
| image_only_indicator=image_only_indicator, | |
| time_context=time_context, | |
| num_video_frames=num_video_frames, | |
| skip_spatial_attention=skip_spatial_attention, | |
| skip_temporal_attention=skip_temporal_attention, | |
| ) | |
| curr_context_idx = None if curr_context_idx is None else curr_context_idx + 1 | |
| for i, module in enumerate(self.output_blocks): | |
| skip_x = hs.pop() | |
| if self.adapter is not None: | |
| skip_x = self.adapter[i]( | |
| skip_x, n_frames=num_video_frames, condition=audio_emb | |
| ) | |
| h = th.cat([h, skip_x], dim=1) | |
| skip_spatial_attention = self.get_skip_attention_at( | |
| skip_spatial_attention_at, | |
| curr_context_idx, | |
| x.shape[0], | |
| num_video_frames, | |
| ) | |
| skip_temporal_attention = self.get_skip_attention_at( | |
| skip_temporal_attention_at, | |
| curr_context_idx, | |
| x.shape[0], | |
| num_video_frames, | |
| ) | |
| h, is_attention = module( | |
| h, | |
| emb, | |
| context=context, | |
| reference_context=reference_context[curr_context_idx] | |
| if reference_context is not None | |
| else None, | |
| audio_context=audio_emb | |
| if "cross_attention" in self.audio_cond_method | |
| else None, | |
| image_only_indicator=image_only_indicator, | |
| time_context=time_context, | |
| num_video_frames=num_video_frames, | |
| skip_spatial_attention=skip_spatial_attention, | |
| skip_temporal_attention=skip_temporal_attention, | |
| ) | |
| if is_attention: | |
| curr_context_idx = ( | |
| None if curr_context_idx is None else curr_context_idx + 1 | |
| ) | |
| # h = h.type(x.dtype) | |
| return self.out(h) | |