Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,763 Bytes
85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 fdc2668 9cb2064 fdc2668 c66f6d9 9cb2064 c66f6d9 9cb2064 85119c0 fdc2668 9cb2064 c66f6d9 9cb2064 85119c0 9cb2064 fdc2668 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 9cb2064 85119c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# app.py
import os
import math
import spaces
import gradio as gr
import torch
from PIL import Image, ImageChops
from diffusers import AutoPipelineForInpainting, AutoencoderKL
# =============================
# Helpers (CPU-only; no CUDA)
# =============================
def _round_up(x: int, m: int = 8) -> int:
return int(math.ceil(x / m) * m)
def autocrop_content(img: Image.Image, bg_color=(255, 255, 255), tol: int = 12) -> Image.Image:
"""
Trim uniform white (or near-white) margins before centering/padding.
Handles RGBA via alpha bbox; for RGB compares to a solid background.
"""
if img.mode in ("RGBA", "LA"):
alpha = img.split()[-1]
bbox = alpha.getbbox()
return img.crop(bbox) if bbox else img
bg = Image.new(img.mode, img.size, bg_color)
diff = ImageChops.difference(img, bg).convert("L")
mask = diff.point(lambda p: 255 if p > tol else 0, mode="1")
bbox = mask.getbbox()
return img.crop(bbox) if bbox else img
def square_pad_meta(
img: Image.Image, color: str = "white", multiple: int = 8
) -> tuple[Image.Image, int, int, int, int, int]:
"""
Autocrop -> center-pad to a square whose side is rounded UP to `multiple`.
Returns (square_img, left, top, orig_w, orig_h, side).
"""
img = autocrop_content(img, (255, 255, 255), tol=12)
orig_w, orig_h = img.size
side = _round_up(max(orig_w, orig_h), multiple)
bg = Image.new("RGB", (side, side), color=color)
left = (side - orig_w) // 2
top = (side - orig_h) // 2
bg.paste(img, (left, top))
return bg, left, top, orig_w, orig_h, side
def resize_to_multiple(image: Image.Image, m: int = 8) -> Image.Image:
"""
Resize **up** so width/height are multiples of m (avoids 1012x1012 errors).
"""
w, h = image.size
nw = _round_up(w, m)
nh = _round_up(h, m)
if (nw, nh) == (w, h):
return image
return image.resize((nw, nh), Image.LANCZOS)
# =============================
# Lazy singletons (created inside GPU context)
# =============================
PIPELINE = None
def _get_pipeline(device: str):
"""
Create & cache the diffusers pipeline once we actually have a GPU (ZeroGPU).
No CUDA calls should happen before this is executed.
"""
global PIPELINE
if PIPELINE is not None:
PIPELINE.to(device)
return PIPELINE
model_id = os.environ.get("MODEL")
ip_adapter_repo = os.environ.get("IP_ADAPTER")
if not model_id:
raise RuntimeError("Missing env var MODEL (e.g. 'stabilityai/stable-diffusion-xl-base-1.0').")
if not ip_adapter_repo:
raise RuntimeError("Missing env var IP_ADAPTER (e.g. 'h94/IP-Adapter').")
# Build VAE & pipeline WITHOUT touching CUDA yet.
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipe = AutoPipelineForInpainting.from_pretrained(
model_id,
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
# Attach IP-Adapter weights (no CUDA op yet)
pipe.load_ip_adapter(
ip_adapter_repo,
subfolder="sdxl_models",
weight_name="ip-adapter_sdxl.bin",
)
# NOW move the whole pipeline to the device ZeroGPU assigned
pipe.to(device)
PIPELINE = pipe
return PIPELINE
# =============================
# Main generate (GPU section)
# =============================
@spaces.GPU(duration=180)
def generate(person: Image.Image, clothing: Image.Image) -> Image.Image:
"""
This function is called *after* ZeroGPU allocates a CUDA device.
All CUDA/ONNXRuntime initializations must happen here (or deeper).
"""
# Import segmentation modules here so they initialize after GPU exists.
from SegBody import segment_body
from SegCloth import segment_clothing
# If onnxruntime is used under the hood, ensure it doesn't try CUDA without a GPU.
try:
import onnxruntime as ort # noqa: F401
if not torch.cuda.is_available():
os.environ.setdefault("ORT_DISABLE_CUDA", "1")
except Exception:
pass
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = _get_pipeline(device)
# --- Preprocess (CPU)
person = person.copy()
clothing = clothing.copy()
# Keep person within 1024, then square-pad to /8 and remember offsets.
person.thumbnail((1024, 1024))
square_img, left, top, ow, oh, side = square_pad_meta(person, color="white", multiple=8)
image = square_img # feed this square to seg & pipeline (already /8-compliant)
# Clothing can be smaller; make dimensions /8 to be safe.
clothing.thumbnail((1024, 1024))
clothing = resize_to_multiple(clothing, 8)
# --- Segmentation (after GPU allocation; modules can use GPU if they choose)
seg_image, mask_image = segment_body(image, face=False)
seg_cloth = segment_clothing(
clothing,
clothes=["Upper-clothes", "Skirt", "Pants", "Dress", "Belt"],
)
# --- Diffusion
pipe.set_ip_adapter_scale(1.0)
result = pipe(
prompt="photorealistic, perfect body, beautiful skin, realistic skin, natural skin",
negative_prompt=(
"ugly, bad quality, bad anatomy, deformed body, deformed hands, "
"deformed feet, deformed face, deformed clothing, deformed skin, "
"bad skin, leggings, tights, stockings"
),
image=image,
mask_image=mask_image,
ip_adapter_image=seg_cloth,
width=image.width,
height=image.height,
strength=0.99,
guidance_scale=7.5,
num_inference_steps=100,
).images[0]
# Crop back to the original (post-thumbnail) person frame using the paste offsets.
final = result.crop((left, top, left + ow, top + oh))
return final
# =============================
# Gradio UI
# =============================
iface = gr.Interface(
fn=generate,
inputs=[gr.Image(label="Person", type="pil"), gr.Image(label="Clothing", type="pil")],
outputs=[gr.Image(label="Result")],
title="Fashion Try-On",
description="""
by <a href="https://www.tonyassi.com/">Tony Assi</a><br/>
Check out <a href="https://huggingface.co/spaces/tonyassi/Virtual-Try-On-Pro">Virtual Try-On Pro</a> !<br/><br/>
Please β€οΈ this Space. I build custom AI apps for companies. <a href="mailto: tony.assi.media@gmail.com">Email me</a> for business inquiries.
""",
theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate"),
examples=[
["images/person1.jpg", "images/clothing1.jpg"],
["images/person1.jpg", "images/clothing2.jpg"],
],
)
if __name__ == "__main__":
iface.launch()
|