Spaces:
Runtime error
Runtime error
| from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline | |
| from diffusers import DiffusionPipeline | |
| from transformers import AutoModelForSeq2SeqLM | |
| from samplings import top_p_sampling, temperature_sampling | |
| import torch | |
| class AIAssistant: | |
| def __init__(self): | |
| pass | |
| def entity_pos_tagger(self, example): | |
| tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl") | |
| model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl") | |
| nlp = pipeline("ner", model=model, tokenizer=tokenizer) | |
| ner_results = nlp(example) | |
| return ner_results | |
| def text_to_image_generation(self, prompt, n_steps=40, high_noise_frac=0.8): | |
| base = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True | |
| ) | |
| base.to("cuda") | |
| refiner = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-refiner-1.0", | |
| text_encoder_2=base.text_encoder_2, | |
| vae=base.vae, | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| variant="fp16", | |
| ) | |
| refiner.to("cuda") | |
| image = base( | |
| prompt=prompt, | |
| num_inference_steps=n_steps, | |
| denoising_end=high_noise_frac, | |
| output_type="latent", | |
| ).images | |
| image = refiner( | |
| prompt=prompt, | |
| num_inference_steps=n_steps, | |
| denoising_start=high_noise_frac, | |
| image=image, | |
| ).images[0] | |
| return image | |
| def grammatical_pos_tagger(self, text): | |
| nlp_pos = pipeline( | |
| "ner", | |
| model="mrm8488/bert-spanish-cased-finetuned-pos", | |
| tokenizer=( | |
| 'mrm8488/bert-spanish-cased-finetuned-pos', | |
| {"use_fast": False} | |
| )) | |
| return nlp_pos(text) | |
| def text_to_music(self, text, max_length=1024, top_p=0.9, temperature=1.0): | |
| tokenizer = AutoTokenizer.from_pretrained('sander-wood/text-to-music') | |
| model = AutoModelForSeq2SeqLM.from_pretrained('sander-wood/text-to-music') | |
| input_ids = tokenizer(text, | |
| return_tensors='pt', | |
| truncation=True, | |
| max_length=max_length)['input_ids'] | |
| decoder_start_token_id = model.config.decoder_start_token_id | |
| eos_token_id = model.config.eos_token_id | |
| decoder_input_ids = torch.tensor([[decoder_start_token_id]]) | |
| for t_idx in range(max_length): | |
| outputs = model(input_ids=input_ids, | |
| decoder_input_ids=decoder_input_ids) | |
| probs = outputs.logits[0][-1] | |
| probs = torch.nn.Softmax(dim=-1)(probs).detach().numpy() | |
| sampled_id = temperature_sampling(probs=top_p_sampling(probs, | |
| top_p=top_p, | |
| return_probs=True), | |
| temperature=temperature) | |
| decoder_input_ids = torch.cat((decoder_input_ids, torch.tensor([[sampled_id]])), 1) | |
| if sampled_id!=eos_token_id: | |
| continue | |
| else: | |
| tune = "X:1\n" | |
| tune += tokenizer.decode(decoder_input_ids[0], skip_special_tokens=True) | |
| return tune | |
| break | |
| # Ejemplo de uso | |
| assistant = AIAssistant() | |
| ner_results = assistant.entity_pos_tagger("Nader Jokhadar had given Syria the lead with a well-struck header in the seventh minute.") | |
| print(ner_results) | |
| image = assistant.text_to_image_generation("A majestic lion jumping from a big stone at night") | |
| print(image) | |
| pos_tags = assistant.grammatical_pos_tagger('Mis amigos están pensando en viajar a Londres este verano') | |
| print(pos_tags) | |
| tune = assistant.text_to_music("This is a traditional Irish dance music.") | |
| print(tune) | |