|
|
#!/usr/bin/env node |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import fs from 'node:fs/promises'; |
|
|
import path from 'node:path'; |
|
|
|
|
|
function parseArgs(argv){ |
|
|
const args = { runs: 3, steps: 10, out: '', seed: undefined, epochMax: 3.0, amount: 1, start: 1 }; |
|
|
for (let i = 2; i < argv.length; i++){ |
|
|
const a = argv[i]; |
|
|
if (a === '--runs' && argv[i+1]) { args.runs = Math.max(1, parseInt(argv[++i], 10) || 3); continue; } |
|
|
if (a === '--steps' && argv[i+1]) { args.steps = Math.max(2, parseInt(argv[++i], 10) || 10); continue; } |
|
|
if (a === '--out' && argv[i+1]) { args.out = argv[++i]; continue; } |
|
|
if (a === '--seed' && argv[i+1]) { args.seed = Number(argv[++i]); continue; } |
|
|
if (a === '--epoch-max' && argv[i+1]) { args.epochMax = Number(argv[++i]) || 3.0; continue; } |
|
|
if (a === '--amount' && argv[i+1]) { args.amount = Number(argv[++i]) || 1.0; continue; } |
|
|
if (a === '--start' && argv[i+1]) { args.start = parseInt(argv[++i], 10) || 1; continue; } |
|
|
} |
|
|
if (!args.out) { |
|
|
args.out = path.join('app', 'src', 'content', 'assets', 'data', 'trackio_wandb_synth.csv'); |
|
|
} |
|
|
return args; |
|
|
} |
|
|
|
|
|
function mulberry32(seed){ |
|
|
let t = seed >>> 0; |
|
|
return function(){ |
|
|
t += 0x6D2B79F5; |
|
|
let r = Math.imul(t ^ (t >>> 15), 1 | t); |
|
|
r ^= r + Math.imul(r ^ (r >>> 7), 61 | r); |
|
|
return ((r ^ (r >>> 14)) >>> 0) / 4294967296; |
|
|
}; |
|
|
} |
|
|
|
|
|
function makeRng(seed){ |
|
|
if (Number.isFinite(seed)) return mulberry32(seed); |
|
|
return Math.random; |
|
|
} |
|
|
|
|
|
function randn(rng){ |
|
|
|
|
|
let u = 0, v = 0; |
|
|
while (u === 0) u = rng(); |
|
|
while (v === 0) v = rng(); |
|
|
return Math.sqrt(-2.0 * Math.log(u)) * Math.cos(2.0 * Math.PI * v); |
|
|
} |
|
|
|
|
|
function clamp(x, lo, hi){ |
|
|
return Math.max(lo, Math.min(hi, x)); |
|
|
} |
|
|
|
|
|
function logistic(t, k=6, x0=0.5){ |
|
|
|
|
|
return 1 / (1 + Math.exp(-k * (t - x0))); |
|
|
} |
|
|
|
|
|
function expDecay(t, k=3){ |
|
|
|
|
|
return 1 - Math.exp(-k * t); |
|
|
} |
|
|
|
|
|
function pick(array, rng){ |
|
|
return array[Math.floor(rng() * array.length) % array.length]; |
|
|
} |
|
|
|
|
|
function buildRunNames(count, rng){ |
|
|
const adjectives = [ |
|
|
'pleasant','brisk','silent','ancient','bold','gentle','rapid','shy','curious','lively', |
|
|
'fearless','soothing','glossy','hidden','misty','bright','calm','keen','noble','swift' |
|
|
]; |
|
|
const nouns = [ |
|
|
'flower','glade','sky','river','forest','ember','comet','meadow','harbor','dawn', |
|
|
'mountain','prairie','breeze','valley','lagoon','desert','monsoon','reef','thunder','willow' |
|
|
]; |
|
|
const names = new Set(); |
|
|
let attempts = 0; |
|
|
while (names.size < count && attempts < count * 20){ |
|
|
attempts++; |
|
|
const left = pick(adjectives, rng); |
|
|
const right = pick(nouns, rng); |
|
|
const idx = 1 + Math.floor(rng() * 9); |
|
|
names.add(`${left}-${right}-${idx}`); |
|
|
} |
|
|
return Array.from(names); |
|
|
} |
|
|
|
|
|
function formatLike(value, decimals){ |
|
|
return Number.isFinite(decimals) && decimals >= 0 ? value.toFixed(decimals) : String(value); |
|
|
} |
|
|
|
|
|
async function main(){ |
|
|
const args = parseArgs(process.argv); |
|
|
const rng = makeRng(args.seed); |
|
|
|
|
|
|
|
|
const steps = Array.from({ length: args.steps }, (_, i) => args.start + i); |
|
|
const stepNorm = (i) => (i - steps[0]) / (steps[steps.length-1] - steps[0]); |
|
|
|
|
|
const runs = buildRunNames(args.runs, rng); |
|
|
|
|
|
|
|
|
const runParams = runs.map((_r, idx) => { |
|
|
const r = rng(); |
|
|
|
|
|
const trainAccFinal = clamp(0.86 + (r - 0.5) * 0.12 * args.amount, 0.78, 0.97); |
|
|
const valAccFinal = clamp(trainAccFinal - (0.02 + rng() * 0.05), 0.70, 0.95); |
|
|
|
|
|
const lossStart = 7.0 + (rng() - 0.5) * 0.10 * args.amount; |
|
|
const lossPlateau = 6.78 + (rng() - 0.5) * 0.04 * args.amount; |
|
|
const lossK = 2.0 + rng() * 1.5; |
|
|
|
|
|
const kAcc = 4.5 + rng() * 3.0; |
|
|
const x0Acc = 0.35 + rng() * 0.25; |
|
|
return { trainAccFinal, valAccFinal, lossStart, lossPlateau, lossK, kAcc, x0Acc }; |
|
|
}); |
|
|
|
|
|
const lines = []; |
|
|
lines.push('run,step,metric,value,stderr'); |
|
|
|
|
|
|
|
|
for (let r = 0; r < runs.length; r++){ |
|
|
const run = runs[r]; |
|
|
for (let i = 0; i < steps.length; i++){ |
|
|
const t = stepNorm(steps[i]); |
|
|
const epoch = args.epochMax * t; |
|
|
lines.push(`${run},${steps[i]},epoch,${formatLike(epoch, 2)},`); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
for (let r = 0; r < runs.length; r++){ |
|
|
const run = runs[r]; |
|
|
const p = runParams[r]; |
|
|
let prevTrain = null; |
|
|
let prevVal = null; |
|
|
for (let i = 0; i < steps.length; i++){ |
|
|
const t = stepNorm(steps[i]); |
|
|
const d = expDecay(t, p.lossK); |
|
|
let trainLoss = p.lossStart - (p.lossStart - p.lossPlateau) * d; |
|
|
let valLoss = trainLoss + 0.02 + (rng() * 0.03); |
|
|
|
|
|
trainLoss += randn(rng) * 0.01 * args.amount; |
|
|
valLoss += randn(rng) * 0.012 * args.amount; |
|
|
|
|
|
if (prevTrain != null) trainLoss = Math.min(prevTrain + 0.01, trainLoss); |
|
|
if (prevVal != null) valLoss = Math.min(prevVal + 0.012, valLoss); |
|
|
prevTrain = trainLoss; prevVal = valLoss; |
|
|
const stderrTrain = clamp(0.03 - 0.02 * t + Math.abs(randn(rng)) * 0.003, 0.006, 0.04); |
|
|
const stderrVal = clamp(0.035 - 0.022 * t + Math.abs(randn(rng)) * 0.003, 0.008, 0.045); |
|
|
lines.push(`${run},${steps[i]},train_loss,${formatLike(trainLoss, 3)},${formatLike(stderrTrain, 3)}`); |
|
|
lines.push(`${run},${steps[i]},val_loss,${formatLike(valLoss, 3)},${formatLike(stderrVal, 3)}`); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
for (let r = 0; r < runs.length; r++){ |
|
|
const run = runs[r]; |
|
|
const p = runParams[r]; |
|
|
for (let i = 0; i < steps.length; i++){ |
|
|
const t = stepNorm(steps[i]); |
|
|
const accBase = logistic(t, p.kAcc, p.x0Acc); |
|
|
let trainAcc = clamp(0.55 + accBase * (p.trainAccFinal - 0.55), 0, 1); |
|
|
let valAcc = clamp(0.52 + accBase * (p.valAccFinal - 0.52), 0, 1); |
|
|
|
|
|
trainAcc = clamp(trainAcc + randn(rng) * 0.005 * args.amount, 0, 1); |
|
|
valAcc = clamp(valAcc + randn(rng) * 0.006 * args.amount, 0, 1); |
|
|
const stderrTrain = clamp(0.02 - 0.011 * t + Math.abs(randn(rng)) * 0.002, 0.006, 0.03); |
|
|
const stderrVal = clamp(0.022 - 0.012 * t + Math.abs(randn(rng)) * 0.002, 0.007, 0.032); |
|
|
lines.push(`${run},${steps[i]},train_accuracy,${formatLike(trainAcc, 4)},${formatLike(stderrTrain, 3)}`); |
|
|
lines.push(`${run},${steps[i]},val_accuracy,${formatLike(valAcc, 4)},${formatLike(stderrVal, 3)}`); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
await fs.mkdir(path.dirname(args.out), { recursive: true }); |
|
|
await fs.writeFile(args.out, lines.join('\n') + '\n', 'utf8'); |
|
|
const relOut = path.relative(process.cwd(), args.out); |
|
|
console.log(`Synthetic CSV generated: ${relOut}`); |
|
|
} |
|
|
|
|
|
main().catch(err => { console.error(err?.stack || String(err)); process.exit(1); }); |
|
|
|