File size: 17,005 Bytes
49fffdb
 
 
57be256
 
 
4989641
49fffdb
4989641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49fffdb
 
4989641
49fffdb
 
065764c
1afbdec
065764c
1afbdec
 
 
 
065764c
 
4989641
 
 
 
065764c
4989641
 
065764c
4989641
1afbdec
065764c
 
 
 
1afbdec
 
065764c
 
 
4989641
065764c
1afbdec
 
 
 
065764c
4989641
 
 
 
 
 
 
 
 
 
 
 
 
 
1afbdec
 
 
 
 
2c2d476
1afbdec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4989641
 
065764c
2c2d476
1afbdec
2c2d476
1afbdec
 
065764c
2c2d476
 
1afbdec
 
065764c
1afbdec
065764c
1afbdec
065764c
4989641
 
 
 
2c2d476
 
4989641
 
49fffdb
1afbdec
 
 
4989641
 
 
 
 
 
 
 
1afbdec
 
 
 
 
 
 
 
 
 
 
065764c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1afbdec
065764c
1afbdec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
065764c
 
1afbdec
 
 
 
 
 
065764c
 
 
 
 
 
 
 
1afbdec
065764c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1afbdec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
065764c
 
 
 
 
 
 
 
 
1afbdec
065764c
4989641
2c2d476
 
 
 
4989641
2c2d476
 
 
 
 
4989641
2c2d476
 
 
 
 
 
 
 
 
 
065764c
 
 
 
 
 
 
 
1afbdec
 
065764c
 
 
 
 
1afbdec
065764c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4989641
 
 
 
 
2c2d476
 
4989641
2c2d476
4989641
 
 
 
2c2d476
 
4989641
2c2d476
4989641
 
065764c
 
 
 
 
4989641
065764c
 
 
 
 
4989641
065764c
49fffdb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import matplotlib.pyplot as plt
import numpy as np

import gradio as gr


# Sample test results with test names
MODELS = {
    "llama": {
        "amd": {
            "passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore"],
            "failed": ["network_timeout"],
            "skipped": ["gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "distributed", "multi_gpu"],
            "error": []
        },
        "nvidia": {
            "passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
            "failed": ["network_timeout", "distributed"],
            "skipped": ["multi_gpu"],
            "error": []
        }
    },
    "gemma3": {
        "amd": {
            "passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch", "env_vars", "secrets_mgmt", "tls_cert", "encryption", "compression", "serialization", "deserialization", "validation"],
            "failed": ["gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "distributed", "multi_gpu"],
            "skipped": ["perf_test", "stress_test", "load_test", "endurance", "benchmark", "profiling", "memory_leak", "cpu_usage", "disk_io", "network_bw", "latency", "throughput"],
            "error": []
        },
        "nvidia": {
            "passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch", "env_vars", "secrets_mgmt", "tls_cert", "encryption", "compression", "serialization", "deserialization", "validation", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
            "failed": ["distributed", "multi_gpu"],
            "skipped": ["perf_test", "stress_test", "load_test", "endurance", "benchmark", "profiling", "memory_leak", "cpu_usage", "disk_io", "network_bw"],
            "error": []
        }
    },
    "csm": {
        "amd": {
            "passed": [],
            "failed": [],
            "skipped": [],
            "error": ["system_crash"]
        },
        "nvidia": {
            "passed": [],
            "failed": [],
            "skipped": [],
            "error": ["system_crash"]
        }
    }
}

def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]:
    """Draws a pie chart of model's passed, failed, skipped, and error stats."""
    model_stats = MODELS[model_name]
    
    # Softer color palette - less pastel, more vibrant
    colors = {
        'passed': '#4CAF50',    # Medium green
        'failed': '#E53E3E',    # More red
        'skipped': '#FFD54F',   # Medium yellow
        'error': '#8B0000'      # Dark red
    }
    
    # Convert test lists to counts for chart display
    amd_stats = {k: len(v) for k, v in model_stats['amd'].items()}
    nvidia_stats = {k: len(v) for k, v in model_stats['nvidia'].items()}
    
    # Filter out categories with 0 values for cleaner visualization
    amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
    nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0}
    
    if not amd_filtered and not nvidia_filtered:
        # Handle case where all values are 0 - minimal empty state
        fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
        ax.set_facecolor('#000000')
        ax.text(0.5, 0.5, 'No test results available', 
                horizontalalignment='center', verticalalignment='center',
                transform=ax.transAxes, fontsize=16, color='#888888',
                fontfamily='monospace', weight='normal')
        ax.set_xlim(0, 1)
        ax.set_ylim(0, 1)
        ax.axis('off')
        return fig, "", ""
    
    # Create figure with two subplots side by side with padding
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 9), facecolor='#000000')
    ax1.set_facecolor('#000000')
    ax2.set_facecolor('#000000')
    
    def create_pie_chart(ax, device_label, filtered_stats):
        if not filtered_stats:
            ax.text(0.5, 0.5, 'No test results', 
                   horizontalalignment='center', verticalalignment='center',
                   transform=ax.transAxes, fontsize=14, color='#888888',
                   fontfamily='monospace', weight='normal')
            ax.set_title(device_label, 
                        fontsize=28, weight='bold', pad=2, color='#FFFFFF', 
                        fontfamily='monospace')
            ax.axis('off')
            return
            
        chart_colors = [colors[category] for category in filtered_stats.keys()]
        
        # Create minimal pie chart - full pie, no donut effect
        wedges, texts, autotexts = ax.pie(
            filtered_stats.values(), 
            labels=[label.lower() for label in filtered_stats.keys()],  # Lowercase for minimal look
            colors=chart_colors,
            autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}',
            startangle=90,
            explode=None,  # No separation
            shadow=False,
            wedgeprops=dict(edgecolor='#1a1a1a', linewidth=0.5),  # Minimal borders
            textprops={'fontsize': 12, 'weight': 'normal', 'color': '#CCCCCC', 'fontfamily': 'monospace'}
        )
        
        # Enhanced percentage text styling for better readability
        for autotext in autotexts:
            autotext.set_color('#000000')  # Black text for better contrast
            autotext.set_weight('bold')
            autotext.set_fontsize(14)
            autotext.set_fontfamily('monospace')
        
        # Minimal category labels
        for text in texts:
            text.set_color('#AAAAAA')
            text.set_weight('normal')
            text.set_fontsize(13)
            text.set_fontfamily('monospace')
        
        # Device label closer to chart and bigger
        ax.set_title(device_label, 
                    fontsize=28, weight='bold', pad=2, color='#FFFFFF', 
                    fontfamily='monospace')
    
    # Create both pie charts with device labels
    create_pie_chart(ax1, "amd", amd_filtered)
    create_pie_chart(ax2, "nvidia", nvidia_filtered)
    
    # Add subtle separation line between charts - stops at device labels level
    line_x = 0.5
    fig.add_artist(plt.Line2D([line_x, line_x], [0.0, 0.85], 
                              color='#333333', linewidth=1, alpha=0.5,
                              transform=fig.transFigure))
    
    # Add central shared title for model name
    fig.suptitle(f'{model_name.lower()}', 
                fontsize=18, weight='normal', color='#CCCCCC', 
                fontfamily='monospace', y=0.95)
    
    # Clean layout with padding and space for central title
    plt.tight_layout()
    plt.subplots_adjust(top=0.85, wspace=0.4)  # Added wspace for padding between charts
    
    # Generate separate failed tests info for AMD and NVIDIA
    amd_failed = model_stats['amd']['failed']
    nvidia_failed = model_stats['nvidia']['failed']
    
    amd_failed_info = "Fails on AMD:\n────────────\n" + ("\n".join(amd_failed) if amd_failed else "None")
    nvidia_failed_info = "Fails on NVIDIA:\n────────────────\n" + ("\n".join(nvidia_failed) if nvidia_failed else "None")
    
    return fig, amd_failed_info, nvidia_failed_info

def get_model_stats_summary(model_name: str) -> tuple:
    """Get summary stats for a model (total tests, success rate, status indicator)."""
    stats = MODELS[model_name]
    # Combine AMD and NVIDIA results
    total_passed = len(stats['amd']['passed']) + len(stats['nvidia']['passed'])
    total_failed = len(stats['amd']['failed']) + len(stats['nvidia']['failed'])
    total_skipped = len(stats['amd']['skipped']) + len(stats['nvidia']['skipped'])
    total_error = len(stats['amd']['error']) + len(stats['nvidia']['error'])
    
    total = total_passed + total_failed + total_skipped + total_error
    success_rate = (total_passed / total * 100) if total > 0 else 0
    
    # Determine status indicator color
    if success_rate >= 80:
        status_class = "success-high"
    elif success_rate >= 50:
        status_class = "success-medium"
    else:
        status_class = "success-low"
    
    return total, success_rate, status_class

# Custom CSS for dark theme
dark_theme_css = """
/* Global dark theme */
.gradio-container {
    background-color: #000000 !important;
    color: white !important;
}

/* Remove borders from all components */
.gr-box, .gr-form, .gr-panel {
    border: none !important;
    background-color: #000000 !important;
}

/* Sidebar styling */
.sidebar {
    background: linear-gradient(145deg, #111111, #1a1a1a) !important;
    border: none !important;
    padding: 25px !important;
    box-shadow: inset 2px 2px 5px rgba(0, 0, 0, 0.3) !important;
    margin: 0 !important;
    height: 100vh !important;
    position: fixed !important;
    left: 0 !important;
    top: 0 !important;
    width: 300px !important;
}

/* Enhanced model button styling */
.model-button {
    background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
    color: white !important;
    border: 2px solid transparent !important;
    margin: 2px 0 !important;
    border-radius: 5px !important;
    padding: 8px 12px !important;
    transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1) !important;
    position: relative !important;
    overflow: hidden !important;
    box-shadow: 
        0 4px 15px rgba(0, 0, 0, 0.2),
        inset 0 1px 0 rgba(255, 255, 255, 0.1) !important;
    font-weight: 600 !important;
    font-size: 16px !important;
    text-transform: uppercase !important;
    letter-spacing: 0.5px !important;
    font-family: monospace !important;
}

.model-button:hover {
    background: linear-gradient(135deg, #3a3a3a, #2e2e2e) !important;
    color: #74b9ff !important;
}

.model-button:active {
    background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
    color: #5a9bd4 !important;
}

/* Model stats badge */
.model-stats {
    display: flex !important;
    justify-content: space-between !important;
    align-items: center !important;
    margin-top: 8px !important;
    font-size: 12px !important;
    opacity: 0.8 !important;
}

.stats-badge {
    background: rgba(116, 185, 255, 0.2) !important;
    padding: 4px 8px !important;
    border-radius: 10px !important;
    font-weight: 500 !important;
    font-size: 11px !important;
    color: #74b9ff !important;
}

.success-indicator {
    width: 8px !important;
    height: 8px !important;
    border-radius: 50% !important;
    display: inline-block !important;
    margin-right: 6px !important;
}

.success-high { background-color: #4CAF50 !important; }
.success-medium { background-color: #FF9800 !important; }
.success-low { background-color: #F44336 !important; }

/* Regular button styling for non-model buttons */
.gr-button:not(.model-button) {
    background-color: #222222 !important;
    color: white !important;
    border: 1px solid #444444 !important;
    margin: 5px 0 !important;
    border-radius: 8px !important;
    transition: all 0.3s ease !important;
}

.gr-button:not(.model-button):hover {
    background-color: #333333 !important;
    border-color: #666666 !important;
}

/* Plot container */
.plot-container {
    background-color: #000000 !important;
    border: none !important;
}

/* Text elements */
h1, h2, h3, p, .markdown {
    color: white !important;
}

/* Sidebar header enhancement */
.sidebar h1 {
    background: linear-gradient(45deg, #74b9ff, #a29bfe) !important;
    -webkit-background-clip: text !important;
    -webkit-text-fill-color: transparent !important;
    background-clip: text !important;
    text-align: center !important;
    margin-bottom: 15px !important;
    font-size: 28px !important;
    font-weight: 700 !important;
    font-family: monospace !important;
}

/* Sidebar description text */
.sidebar p {
    text-align: center !important;
    margin-bottom: 20px !important;
    line-height: 1.5 !important;
    font-size: 14px !important;
    font-family: monospace !important;
}

.sidebar strong {
    color: #74b9ff !important;
    font-weight: 600 !important;
    font-family: monospace !important;
}

.sidebar em {
    color: #a29bfe !important;
    font-style: normal !important;
    opacity: 0.9 !important;
    font-family: monospace !important;
}

/* Remove all borders globally */
* {
    border-color: transparent !important;
}

/* Main content area */
.main-content {
    background-color: #000000 !important;
    padding: 20px !important;
    margin-left: 300px !important;
}

/* Failed tests display - seamless appearance */
.failed-tests textarea {
    background-color: #000000 !important;
    color: #FFFFFF !important;
    font-family: monospace !important;
    font-size: 14px !important;
    border: none !important;
    padding: 10px !important;
    outline: none !important;
    line-height: 1.4 !important;
}

.failed-tests {
    background-color: #000000 !important;
}

.failed-tests .gr-textbox {
    background-color: #000000 !important;
    border: none !important;
}

"""

# Create the Gradio interface with sidebar and dark theme
with gr.Blocks(title="Model Test Results Dashboard", css=dark_theme_css) as demo:
    
    with gr.Row():
        # Sidebar for model selection
        with gr.Column(scale=1, elem_classes=["sidebar"]):
            gr.Markdown("# πŸ€– AI Models")
            gr.Markdown("**Select a model to analyze test results**\n\n*Interactive dashboard with detailed metrics*")
            
            # Model selection buttons in sidebar
            model_buttons = []
            for model_name in MODELS.keys():
                btn = gr.Button(
                    f"{model_name.lower()}", 
                    variant="secondary",
                    size="lg",
                    elem_classes=["model-button"]
                )
                model_buttons.append(btn)
        
        # Main content area
        with gr.Column(scale=4, elem_classes=["main-content"]):
            gr.Markdown("# πŸ“ˆ Test Results Dashboard")
            
            # Create the plot output
            plot_output = gr.Plot(
                label="", 
                format="png",
                elem_classes=["plot-container"]
            )
            
            # Create two separate failed tests displays in a row layout
            with gr.Row():
                with gr.Column(scale=1):
                    amd_failed_tests_output = gr.Textbox(
                        value="Fails on AMD:\n────────────\nnetwork_timeout\ngpu_initialization\nmemory_overflow",
                        lines=6,
                        interactive=False,
                        container=False,
                        elem_classes=["failed-tests"]
                    )
                with gr.Column(scale=1):
                    nvidia_failed_tests_output = gr.Textbox(
                        value="Fails on NVIDIA:\n────────────────\ndistributed\nmulti_gpu\ndriver_conflict",
                        lines=6,
                        interactive=False,
                        container=False,
                        elem_classes=["failed-tests"]
                    )
    
    # Set up click handlers for each button
    for i, (model_name, button) in enumerate(zip(MODELS.keys(), model_buttons)):
        button.click(
            fn=lambda name=model_name: plot_model_stats(name),
            outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
        )
    
    # Initialize with the first model
    demo.load(
        fn=lambda: plot_model_stats(list(MODELS.keys())[0]),
        outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
    )

if __name__ == "__main__":
    demo.launch()