File size: 15,133 Bytes
5309153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from datetime import datetime
from data import extract_model_data

COLORS = {
    'passed': '#4CAF50',
    'failed': '#E53E3E',
    'skipped': '#FFD54F',
    'error': '#8B0000',
    'amd': '#ED1C24',
    'nvidia': '#76B900'
}

FIGURE_WIDTH = 20
FIGURE_HEIGHT = 12

BLACK = '#000000'
LABEL_COLOR = '#CCCCCC'
TITLE_COLOR = '#FFFFFF'
GRID_COLOR = '#333333'

TITLE_FONT_SIZE = 24
LABEL_FONT_SIZE = 14
LEGEND_FONT_SIZE = 12


def create_time_series_summary(historical_df: pd.DataFrame) -> plt.Figure:
    if historical_df.empty or 'date' not in historical_df.columns:
        fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
        ax.set_facecolor(BLACK)
        ax.text(0.5, 0.5, 'No historical data available',
                horizontalalignment='center', verticalalignment='center',
                transform=ax.transAxes, fontsize=20, color='#888888',
                fontfamily='monospace', weight='normal')
        ax.axis('off')
        return fig
    
    historical_df['date_dt'] = pd.to_datetime(historical_df['date'])
    historical_df = historical_df.sort_values('date_dt')
    
    daily_stats = []
    dates = []
    
    for date in historical_df['date_dt'].unique():
        date_data = historical_df[historical_df['date_dt'] == date]
        
        total_amd_passed = total_amd_failed = total_amd_skipped = 0
        total_nvidia_passed = total_nvidia_failed = total_nvidia_skipped = 0
        
        for _, row in date_data.iterrows():
            amd_stats, nvidia_stats = extract_model_data(row)[:2]
            
            total_amd_passed += amd_stats['passed']
            total_amd_failed += amd_stats['failed']
            total_amd_skipped += amd_stats['skipped']
            total_nvidia_passed += nvidia_stats['passed']
            total_nvidia_failed += nvidia_stats['failed']
            total_nvidia_skipped += nvidia_stats['skipped']
        
        amd_total = total_amd_passed + total_amd_failed
        nvidia_total = total_nvidia_passed + total_nvidia_failed
        
        amd_failure_rate = (total_amd_failed / amd_total * 100) if amd_total > 0 else 0
        nvidia_failure_rate = (total_nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0
        
        daily_stats.append({
            'amd_failure_rate': amd_failure_rate,
            'nvidia_failure_rate': nvidia_failure_rate,
            'amd_passed': total_amd_passed,
            'amd_failed': total_amd_failed,
            'amd_skipped': total_amd_skipped,
            'nvidia_passed': total_nvidia_passed,
            'nvidia_failed': total_nvidia_failed,
            'nvidia_skipped': total_nvidia_skipped
        })
        dates.append(date)
    
    fig = plt.figure(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT + 4), facecolor=BLACK)
    gs = fig.add_gridspec(3, 2, height_ratios=[1.2, 1, 1], width_ratios=[2, 1], 
                          hspace=0.3, wspace=0.25)
    
    ax1 = fig.add_subplot(gs[0, :])
    ax2 = fig.add_subplot(gs[1, 0])
    ax3 = fig.add_subplot(gs[2, 0])
    ax4 = fig.add_subplot(gs[1:, 1])
    
    for ax in [ax1, ax2, ax3, ax4]:
        ax.set_facecolor(BLACK)
    
    dates_array = np.array(dates)
    amd_rates = [stat['amd_failure_rate'] for stat in daily_stats]
    nvidia_rates = [stat['nvidia_failure_rate'] for stat in daily_stats]
    
    ax1.fill_between(dates_array, 0, amd_rates, color=COLORS['amd'], alpha=0.15)
    ax1.fill_between(dates_array, 0, nvidia_rates, color=COLORS['nvidia'], alpha=0.15)
    ax1.plot(dates_array, amd_rates, color=COLORS['amd'], linewidth=3, 
             label='AMD', marker='o', markersize=7, markeredgewidth=2, markeredgecolor=BLACK)
    ax1.plot(dates_array, nvidia_rates, color=COLORS['nvidia'], linewidth=3, 
             label='NVIDIA', marker='s', markersize=7, markeredgewidth=2, markeredgecolor=BLACK)
    
    if len(amd_rates) > 2:
        z_amd = np.polyfit(range(len(amd_rates)), amd_rates, 1)
        p_amd = np.poly1d(z_amd)
        ax1.plot(dates_array, p_amd(range(len(amd_rates))), 
                color=COLORS['amd'], linestyle='--', alpha=0.5, linewidth=2)
        
        z_nvidia = np.polyfit(range(len(nvidia_rates)), nvidia_rates, 1)
        p_nvidia = np.poly1d(z_nvidia)
        ax1.plot(dates_array, p_nvidia(range(len(nvidia_rates))), 
                color=COLORS['nvidia'], linestyle='--', alpha=0.5, linewidth=2)
    
    ax1.set_title('Overall Failure Rates Over Time', fontsize=TITLE_FONT_SIZE, 
                  color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=20)
    ax1.set_ylabel('Failure Rate (%)', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
    ax1.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
    ax1.legend(fontsize=LEGEND_FONT_SIZE, loc='upper right', frameon=False, 
               labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
    ax1.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE, axis='x', rotation=45)
    
    amd_passed = [stat['amd_passed'] for stat in daily_stats]
    amd_failed = [stat['amd_failed'] for stat in daily_stats]
    amd_skipped = [stat['amd_skipped'] for stat in daily_stats]
    
    ax2.stackplot(dates_array, amd_passed, amd_failed, amd_skipped,
                  colors=[COLORS['passed'], COLORS['failed'], COLORS['skipped']],
                  alpha=0.8, labels=['Passed', 'Failed', 'Skipped'])
    
    ax2.set_title('AMD Test Results', fontsize=TITLE_FONT_SIZE - 2, 
                  color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=15)
    ax2.set_ylabel('Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
    ax2.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
    ax2.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE - 1, axis='x', rotation=45)
    
    nvidia_passed = [stat['nvidia_passed'] for stat in daily_stats]
    nvidia_failed = [stat['nvidia_failed'] for stat in daily_stats]
    nvidia_skipped = [stat['nvidia_skipped'] for stat in daily_stats]
    
    ax3.stackplot(dates_array, nvidia_passed, nvidia_failed, nvidia_skipped,
                  colors=[COLORS['passed'], COLORS['failed'], COLORS['skipped']],
                  alpha=0.8, labels=['Passed', 'Failed', 'Skipped'])
    
    ax3.set_title('NVIDIA Test Results', fontsize=TITLE_FONT_SIZE - 2, 
                  color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=15)
    ax3.set_ylabel('Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
    ax3.set_xlabel('Date', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
    ax3.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
    ax3.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE - 1, axis='x', rotation=45)
    
    latest = daily_stats[-1]
    metrics = [
        ('Latest AMD Failure Rate', f"{latest['amd_failure_rate']:.1f}%", COLORS['amd']),
        ('Latest NVIDIA Failure Rate', f"{latest['nvidia_failure_rate']:.1f}%", COLORS['nvidia']),
        ('', '', None),
        ('Total AMD Tests', str(latest['amd_passed'] + latest['amd_failed'] + latest['amd_skipped']), '#888888'),
        ('Total NVIDIA Tests', str(latest['nvidia_passed'] + latest['nvidia_failed'] + latest['nvidia_skipped']), '#888888'),
    ]
    
    ax4.axis('off')
    y_pos = 0.9
    ax4.text(0.5, 0.95, 'SUMMARY', ha='center', va='top', fontsize=TITLE_FONT_SIZE - 2,
             color=TITLE_COLOR, fontfamily='monospace', fontweight='bold',
             transform=ax4.transAxes)
    
    for label, value, color in metrics:
        if label:
            ax4.text(0.1, y_pos, label, ha='left', va='center', fontsize=LABEL_FONT_SIZE,
                    color=LABEL_COLOR, fontfamily='monospace', transform=ax4.transAxes)
            ax4.text(0.9, y_pos, value, ha='right', va='center', fontsize=LABEL_FONT_SIZE + 2,
                    color=color or LABEL_COLOR, fontfamily='monospace', fontweight='bold',
                    transform=ax4.transAxes)
        y_pos -= 0.15
    
    handles = [plt.Rectangle((0,0),1,1, fc=COLORS['passed'], alpha=0.8),
               plt.Rectangle((0,0),1,1, fc=COLORS['failed'], alpha=0.8),
               plt.Rectangle((0,0),1,1, fc=COLORS['skipped'], alpha=0.8)]
    ax4.legend(handles, ['Passed', 'Failed', 'Skipped'], 
              loc='lower center', fontsize=LEGEND_FONT_SIZE,
              frameon=False, labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
    
    plt.close('all')
    return fig


def create_model_time_series(historical_df: pd.DataFrame, model_name: str) -> plt.Figure:
    if historical_df.empty or 'date' not in historical_df.columns:
        fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
        ax.set_facecolor(BLACK)
        ax.text(0.5, 0.5, f'No historical data available for {model_name}',
                horizontalalignment='center', verticalalignment='center',
                transform=ax.transAxes, fontsize=20, color='#888888',
                fontfamily='monospace', weight='normal')
        ax.axis('off')
        return fig
    
    model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
    
    if model_data.empty:
        fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
        ax.set_facecolor(BLACK)
        ax.text(0.5, 0.5, f'No data found for model: {model_name}',
                horizontalalignment='center', verticalalignment='center',
                transform=ax.transAxes, fontsize=20, color='#888888',
                fontfamily='monospace', weight='normal')
        ax.axis('off')
        return fig
    
    model_data = model_data.copy()
    model_data['date_dt'] = pd.to_datetime(model_data['date'])
    model_data = model_data.sort_values('date_dt')
    
    dates = model_data['date_dt'].values
    amd_stats_list = []
    nvidia_stats_list = []
    
    for _, row in model_data.iterrows():
        amd_stats, nvidia_stats = extract_model_data(row)[:2]
        amd_stats_list.append(amd_stats)
        nvidia_stats_list.append(nvidia_stats)
    
    fig = plt.figure(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
    gs = fig.add_gridspec(2, 2, height_ratios=[1, 1], width_ratios=[3, 1], 
                          hspace=0.3, wspace=0.2)
    
    ax1 = fig.add_subplot(gs[0, 0])
    ax2 = fig.add_subplot(gs[1, 0])
    ax3 = fig.add_subplot(gs[:, 1])
    
    for ax in [ax1, ax2, ax3]:
        ax.set_facecolor(BLACK)
    
    amd_passed = [stats['passed'] for stats in amd_stats_list]
    amd_failed = [stats['failed'] for stats in amd_stats_list]
    amd_skipped = [stats['skipped'] for stats in amd_stats_list]
    
    ax1.stackplot(dates, amd_passed, amd_failed, amd_skipped,
                  colors=[COLORS['passed'], COLORS['failed'], COLORS['skipped']],
                  alpha=0.7, labels=['Passed', 'Failed', 'Skipped'])
    
    ax1.plot(dates, amd_failed, color=COLORS['failed'], linewidth=2.5, 
             marker='o', markersize=7, markeredgewidth=2, markeredgecolor=BLACK,
             linestyle='-', label='_nolegend_')
    
    ax1.set_title(f'{model_name.upper()} - AMD Results', fontsize=TITLE_FONT_SIZE, 
                  color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=20)
    ax1.set_ylabel('Number of Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
    ax1.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
    ax1.legend(fontsize=LEGEND_FONT_SIZE, loc='upper left', frameon=False, 
               labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
    ax1.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE, axis='x', rotation=45)
    
    nvidia_passed = [stats['passed'] for stats in nvidia_stats_list]
    nvidia_failed = [stats['failed'] for stats in nvidia_stats_list]
    nvidia_skipped = [stats['skipped'] for stats in nvidia_stats_list]
    
    ax2.stackplot(dates, nvidia_passed, nvidia_failed, nvidia_skipped,
                  colors=[COLORS['passed'], COLORS['failed'], COLORS['skipped']],
                  alpha=0.7, labels=['Passed', 'Failed', 'Skipped'])
    
    ax2.plot(dates, nvidia_failed, color=COLORS['failed'], linewidth=2.5, 
             marker='s', markersize=7, markeredgewidth=2, markeredgecolor=BLACK,
             linestyle='-', label='_nolegend_')
    
    ax2.set_title(f'{model_name.upper()} - NVIDIA Results', fontsize=TITLE_FONT_SIZE, 
                  color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=20)
    ax2.set_ylabel('Number of Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
    ax2.set_xlabel('Date', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
    ax2.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
    ax2.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE, axis='x', rotation=45)
    
    ax3.axis('off')
    latest_amd = amd_stats_list[-1]
    latest_nvidia = nvidia_stats_list[-1]
    
    amd_total = latest_amd['passed'] + latest_amd['failed']
    nvidia_total = latest_nvidia['passed'] + latest_nvidia['failed']
    amd_fail_rate = (latest_amd['failed'] / amd_total * 100) if amd_total > 0 else 0
    nvidia_fail_rate = (latest_nvidia['failed'] / nvidia_total * 100) if nvidia_total > 0 else 0
    
    ax3.text(0.5, 0.95, 'LATEST RESULTS', ha='center', va='top', 
             fontsize=TITLE_FONT_SIZE - 4, color=TITLE_COLOR, fontfamily='monospace',
             fontweight='bold', transform=ax3.transAxes)
    
    y = 0.80
    sections = [
        ('AMD', [
            ('Pass Rate', f"{(latest_amd['passed']/amd_total*100) if amd_total > 0 else 0:.1f}%", COLORS['passed']),
            ('Fail Rate', f"{amd_fail_rate:.1f}%", COLORS['failed']),
            ('Total', str(latest_amd['passed'] + latest_amd['failed'] + latest_amd['skipped']), '#888888'),
        ]),
        ('NVIDIA', [
            ('Pass Rate', f"{(latest_nvidia['passed']/nvidia_total*100) if nvidia_total > 0 else 0:.1f}%", COLORS['passed']),
            ('Fail Rate', f"{nvidia_fail_rate:.1f}%", COLORS['failed']),
            ('Total', str(latest_nvidia['passed'] + latest_nvidia['failed'] + latest_nvidia['skipped']), '#888888'),
        ])
    ]
    
    for section_name, metrics in sections:
        ax3.text(0.5, y, section_name, ha='center', va='center',
                fontsize=LABEL_FONT_SIZE + 2, color=TITLE_COLOR,
                fontfamily='monospace', fontweight='bold', transform=ax3.transAxes)
        y -= 0.08
        
        for label, value, color in metrics:
            ax3.text(0.15, y, label, ha='left', va='center',
                    fontsize=LABEL_FONT_SIZE - 1, color=LABEL_COLOR,
                    fontfamily='monospace', transform=ax3.transAxes)
            ax3.text(0.85, y, value, ha='right', va='center',
                    fontsize=LABEL_FONT_SIZE, color=color,
                    fontfamily='monospace', fontweight='bold', transform=ax3.transAxes)
            y -= 0.07
        y -= 0.05
    
    plt.close('all')
    return fig