File size: 31,603 Bytes
f1667dd 5309153 f1667dd 949e6ab aa997ed be77c90 5309153 f1667dd f46b0a9 f1667dd f22e02f f1667dd f22e02f f1667dd f22e02f f1667dd 4ef9cef f1667dd be77c90 5309153 be77c90 f1667dd be77c90 f1667dd 5309153 1b39b38 5309153 1b39b38 5309153 1b39b38 be77c90 f1667dd 2165257 5309153 77dbb67 be77c90 77dbb67 2165257 c1a3d27 f1667dd be77c90 f1667dd 4ef9cef f1667dd f46b0a9 be77c90 f1667dd aa6c7fc c03347d aa6c7fc c03347d 4ef9cef c03347d aa6c7fc f1667dd 5309153 b52e342 5309153 6f570d6 b52e342 6f570d6 b52e342 6f570d6 b52e342 6f570d6 f1667dd be77c90 5309153 f1667dd be77c90 5309153 f1667dd 949e6ab 5309153 aa6c7fc 5309153 f1667dd 5309153 f1667dd be77c90 aa997ed f1667dd 5309153 f1667dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
from huggingface_hub import HfFileSystem
import pandas as pd
from utils import logger
from datetime import datetime, timedelta
import threading
import traceback
import json
import re
from typing import List, Tuple, Optional
# NOTE: if caching is an issue, try adding `use_listings_cache=False`
fs = HfFileSystem()
IMPORTANT_MODELS = [
"auto",
"bert", # old but dominant (encoder only)
"gpt2", # old (decoder)
"t5", # old (encoder-decoder)
"modernbert", # (encoder only)
"vit", # old (vision) - fixed comma
"clip", # old but dominant (vision)
"detr", # objection detection, segmentation (vision)
"table_transformer", # objection detection (visioin) - maybe just detr?
"got_ocr2", # ocr (vision)
"whisper", # old but dominant (audio)
"wav2vec2", # old (audio)
"qwen2_audio", # (audio)
"speech_t5", # (audio)
"csm", # (audio)
"llama", # new and dominant (meta)
"gemma3", # new (google)
"qwen2", # new (Alibaba)
"mistral3", # new (Mistral) - added missing comma
"qwen2_5_vl", # new (vision)
"llava", # many models from it (vision)
"smolvlm", # new (video)
"internvl", # new (video)
"gemma3n", # new (omnimodal models)
"qwen2_5_omni", # new (omnimodal models)
# "gpt_oss", # new (quite used)
"qwen2_5_omni", # new (omnimodal models)
]
KEYS_TO_KEEP = [
"success_amd",
"success_nvidia",
"skipped_amd",
"skipped_nvidia",
"failed_multi_no_amd",
"failed_multi_no_nvidia",
"failed_single_no_amd",
"failed_single_no_nvidia",
"failures_amd",
"failures_nvidia",
"job_link_amd",
"job_link_nvidia",
]
def log_dataframe_link(link: str) -> str:
"""
Adds the link to the dataset in the logs, modifies it to get a clockable link and then returns the date of the
report.
"""
if link.startswith("sample_"):
return "9999-99-99"
logger.info(f"Reading df located at {link}")
# Make sure the links starts with an http adress
if link.startswith("hf://"):
link = "https://huggingface.co/" + link.removeprefix("hf://")
# Pattern to match transformers_daily_ci followed by any path, then a date (YYYY-MM-DD format)
pattern = r'transformers_daily_ci(.*?)/(\d{4}-\d{2}-\d{2})'
match = re.search(pattern, link)
# Failure case:
if not match:
logger.error("Could not find transformers_daily_ci and.or date in the link")
return "9999-99-99"
# Replace the path between with blob/main
path_between = match.group(1)
link = link.replace("transformers_daily_ci" + path_between, "transformers_daily_ci/blob/main")
logger.info(f"Link to data source: {link}")
# Return the date
return match.group(2)
def infer_latest_update_msg(date_df_amd: str, date_df_nvidia: str) -> str:
# Early return if one of the dates is invalid
if date_df_amd.startswith("9999") and date_df_nvidia.startswith("9999"):
return "could not find last update time"
# Warn if dates are not the same
if date_df_amd != date_df_nvidia:
logger.warning(f"Different dates found: {date_df_amd} (AMD) vs {date_df_nvidia} (NVIDIA)")
# Take the latest date and format it
try:
latest_date = max(date_df_amd, date_df_nvidia)
yyyy, mm, dd = latest_date.split("-")
return f"last updated {mm}/{dd}/{yyyy}"
except Exception as e:
logger.error(f"When trying to infer latest date, got error {e}")
return "could not find last update time"
def read_one_dataframe(json_path: str, device_label: str) -> tuple[pd.DataFrame, str]:
df_upload_date = log_dataframe_link(json_path)
df = pd.read_json(json_path, orient="index")
df.index.name = "model_name"
df[f"failed_multi_no_{device_label}"] = df["failures"].apply(lambda x: len(x["multi"]) if "multi" in x else 0)
df[f"failed_single_no_{device_label}"] = df["failures"].apply(lambda x: len(x["single"]) if "single" in x else 0)
return df, df_upload_date
def get_available_dates() -> List[str]:
"""Get list of available dates from both AMD and NVIDIA datasets."""
try:
# Get AMD dates - the path structure is: YYYY-MM-DD/runs/{run_id}/ci_results_run_models_gpu/model_results.json
amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
files_amd = sorted(fs.glob(amd_src, refresh=True), reverse=True)
logger.info(f"Found {len(files_amd)} AMD files")
# Get NVIDIA dates - structure is: YYYY-MM-DD/ci_results_run_models_gpu/model_results.json
nvidia_src = "hf://datasets/hf-internal-testing/transformers_daily_ci/*/ci_results_run_models_gpu/model_results.json"
files_nvidia = sorted(fs.glob(nvidia_src, refresh=True), reverse=True)
logger.info(f"Found {len(files_nvidia)} NVIDIA files")
# Extract dates from file paths
amd_dates = set()
for file_path in files_amd:
# Pattern to match the date in the AMD path: YYYY-MM-DD/runs/{run_id}/ci_results_run_models_gpu/model_results.json
pattern = r'transformers_daily_ci/(\d{4}-\d{2}-\d{2})/runs/[^/]+/ci_results_run_models_gpu/model_results\.json'
match = re.search(pattern, file_path)
if match:
amd_dates.add(match.group(1))
else:
# Log unmatched paths for debugging
logger.debug(f"AMD file path didn't match pattern: {file_path}")
# Log a few example AMD file paths for debugging
if files_amd:
logger.info(f"Example AMD file paths: {files_amd[:3]}")
nvidia_dates = set()
for file_path in files_nvidia:
# Pattern to match the date in the NVIDIA path: YYYY-MM-DD/ci_results_run_models_gpu/model_results.json
pattern = r'transformers_daily_ci/(\d{4}-\d{2}-\d{2})/ci_results_run_models_gpu/model_results\.json'
match = re.search(pattern, file_path)
if match:
nvidia_dates.add(match.group(1))
logger.info(f"AMD dates: {sorted(amd_dates, reverse=True)[:5]}...") # Show first 5
logger.info(f"NVIDIA dates: {sorted(nvidia_dates, reverse=True)[:5]}...") # Show first 5
# Return intersection of both datasets (dates where both have data)
common_dates = sorted(amd_dates.intersection(nvidia_dates), reverse=True)
logger.info(f"Common dates: {len(common_dates)} dates where both AMD and NVIDIA have data")
if common_dates:
return common_dates[:30] # Limit to last 30 days for performance
else:
# If no real dates available, generate fake dates for the last 7 days
logger.warning("No real dates available, generating fake dates for demo purposes")
fake_dates = []
today = datetime.now()
for i in range(7):
date = today - timedelta(days=i)
fake_dates.append(date.strftime("%Y-%m-%d"))
return fake_dates
except Exception as e:
logger.error(f"Error getting available dates: {e}")
# Generate fake dates when there's an error
logger.info("Generating fake dates due to error")
fake_dates = []
today = datetime.now()
for i in range(7):
date = today - timedelta(days=i)
fake_dates.append(date.strftime("%Y-%m-%d"))
return fake_dates
def get_data_for_date(target_date: str) -> tuple[pd.DataFrame, str]:
"""Get data for a specific date."""
try:
# For AMD, we need to find the specific run file for the date
# AMD structure: YYYY-MM-DD/runs/{run_id}/ci_results_run_models_gpu/model_results.json
amd_src = f"hf://datasets/optimum-amd/transformers_daily_ci/{target_date}/runs/*/ci_results_run_models_gpu/model_results.json"
amd_files = fs.glob(amd_src, refresh=True)
if not amd_files:
raise FileNotFoundError(f"No AMD data found for date {target_date}")
# Use the first (most recent) run for the date
amd_file = amd_files[0]
# Ensure the AMD file path has the hf:// prefix
if not amd_file.startswith("hf://"):
amd_file = f"hf://{amd_file}"
# NVIDIA structure: YYYY-MM-DD/ci_results_run_models_gpu/model_results.json
nvidia_src = f"hf://datasets/hf-internal-testing/transformers_daily_ci/{target_date}/ci_results_run_models_gpu/model_results.json"
# Read dataframes - try each platform independently
df_amd = pd.DataFrame()
df_nvidia = pd.DataFrame()
try:
df_amd, _ = read_one_dataframe(amd_file, "amd")
logger.info(f"Successfully loaded AMD data for {target_date}")
except Exception as e:
logger.warning(f"Failed to load AMD data for {target_date}: {e}")
try:
df_nvidia, _ = read_one_dataframe(nvidia_src, "nvidia")
logger.info(f"Successfully loaded NVIDIA data for {target_date}")
except Exception as e:
logger.warning(f"Failed to load NVIDIA data for {target_date}: {e}")
# If both failed, return empty dataframe
if df_amd.empty and df_nvidia.empty:
logger.warning(f"No data available for either platform on {target_date}")
return pd.DataFrame(), target_date
# Join both dataframes (outer join to include data from either platform)
if not df_amd.empty and not df_nvidia.empty:
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
elif not df_amd.empty:
joined = df_amd.copy()
else:
joined = df_nvidia.copy()
joined = joined[KEYS_TO_KEEP]
joined.index = joined.index.str.replace("^models_", "", regex=True)
# Filter out all but important models
important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
return filtered_joined, target_date
except Exception as e:
logger.error(f"Error getting data for date {target_date}: {e}")
# Return empty dataframe instead of sample data for historical functionality
return pd.DataFrame(), target_date
def get_historical_data(start_date: str, end_date: str, sample_data = False) -> pd.DataFrame:
"""Get historical data for a date range."""
if sample_data:
return get_fake_historical_data(start_date, end_date)
try:
start_dt = datetime.strptime(start_date, "%Y-%m-%d")
end_dt = datetime.strptime(end_date, "%Y-%m-%d")
historical_data = []
current_dt = start_dt
while current_dt <= end_dt:
date_str = current_dt.strftime("%Y-%m-%d")
try:
df, _ = get_data_for_date(date_str)
# Only add non-empty dataframes
if not df.empty:
df['date'] = date_str
historical_data.append(df)
logger.info(f"Loaded data for {date_str}")
else:
logger.warning(f"No data available for {date_str}")
except Exception as e:
logger.warning(f"Could not load data for {date_str}: {e}")
current_dt += timedelta(days=1)
# Combine all dataframes
combined_df = pd.concat(historical_data, ignore_index=False)
return combined_df
except Exception as e:
logger.error(f"Error getting historical data: {e}")
# Fall back to fake data when there's an error
logger.info("Falling back to fake historical data due to error")
return get_fake_historical_data(start_date, end_date)
def get_distant_data() -> tuple[pd.DataFrame, str]:
# Retrieve AMD dataframe
amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
files_amd = sorted(fs.glob(amd_src, refresh=True), reverse=True)
df_amd, date_df_amd = read_one_dataframe(f"hf://{files_amd[0]}", "amd")
# Retrieve NVIDIA dataframe, which pattern should be:
# hf://datasets/hf-internal-testing`/transformers_daily_ci/raw/main/YYYY-MM-DD/ci_results_run_models_gpu/model_results.json
nvidia_src = "hf://datasets/hf-internal-testing/transformers_daily_ci/*/ci_results_run_models_gpu/model_results.json"
files_nvidia = sorted(fs.glob(nvidia_src, refresh=True), reverse=True)
# NOTE: should this be removeprefix instead of lstrip?
nvidia_path = files_nvidia[0].lstrip('datasets/hf-internal-testing/transformers_daily_ci/')
nvidia_path = "https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/main/" + nvidia_path
df_nvidia, date_df_nvidia = read_one_dataframe(nvidia_path, "nvidia")
# Infer and format the latest df date
latest_update_msg = infer_latest_update_msg(date_df_amd, date_df_nvidia)
# Join both dataframes
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
joined = joined[KEYS_TO_KEEP]
joined.index = joined.index.str.replace("^models_", "", regex=True)
# Fitler out all but important models
important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
# Warn for ach missing important models
for model in IMPORTANT_MODELS:
if model not in filtered_joined.index:
print(f"[WARNING] Model {model} was missing from index.")
return filtered_joined, latest_update_msg
def get_sample_data() -> tuple[pd.DataFrame, str]:
# Retrieve sample dataframes
df_amd, _ = read_one_dataframe("sample_amd.json", "amd")
df_nvidia, _ = read_one_dataframe("sample_nvidia.json", "nvidia")
# Join both dataframes
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
joined = joined[KEYS_TO_KEEP]
joined.index = joined.index.str.replace("^models_", "", regex=True)
# Fitler out all but important models
important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
# Prefix all model names with "sample_"
filtered_joined.index = "sample_" + filtered_joined.index
return filtered_joined, "sample data was loaded"
def get_fake_historical_data(start_date: str, end_date: str) -> pd.DataFrame:
"""Generate fake historical data for a date range when real data loading fails."""
try:
start_dt = datetime.strptime(start_date, "%Y-%m-%d")
end_dt = datetime.strptime(end_date, "%Y-%m-%d")
# Generate fake data for each date in the range
historical_data = []
current_dt = start_dt
# Get base sample data to use as template
sample_df, _ = get_sample_data()
while current_dt <= end_dt:
date_str = current_dt.strftime("%Y-%m-%d")
# Create a copy of sample data for this date with some random variations
date_df = sample_df.copy()
date_df['date'] = date_str
# Add some random variation to make it look more realistic
import random
for idx in date_df.index:
# Vary the success/failure counts slightly (±20%)
for col in ['success_amd', 'success_nvidia', 'skipped_amd', 'skipped_nvidia']:
if col in date_df.columns:
original_val = date_df.loc[idx, col]
if pd.notna(original_val) and original_val > 0:
variation = random.uniform(0.8, 1.2)
date_df.loc[idx, col] = max(0, int(original_val * variation))
# Vary failure counts more dramatically to show trends
for col in ['failed_multi_no_amd', 'failed_multi_no_nvidia', 'failed_single_no_amd', 'failed_single_no_nvidia']:
if col in date_df.columns:
original_val = date_df.loc[idx, col]
if pd.notna(original_val):
# Sometimes have more failures, sometimes fewer
variation = random.uniform(0.5, 2.0)
date_df.loc[idx, col] = max(0, int(original_val * variation))
historical_data.append(date_df)
current_dt += timedelta(days=1)
if not historical_data:
logger.warning("No fake historical data generated")
return pd.DataFrame()
# Combine all dataframes
combined_df = pd.concat(historical_data, ignore_index=False)
logger.info(f"Generated fake historical data: {len(combined_df)} records from {start_date} to {end_date}")
return combined_df
except Exception as e:
logger.error(f"Error generating fake historical data: {e}")
return pd.DataFrame()
def safe_extract(row: pd.DataFrame, key: str) -> int:
return int(row.get(key, 0)) if pd.notna(row.get(key, 0)) else 0
def find_failure_first_seen(historical_df: pd.DataFrame, model_name: str, test_name: str, device: str, gpu_type: str) -> Optional[str]:
"""
Find the first date when a specific test failure appeared in historical data.
"""
if historical_df.empty:
return None
try:
# Normalize model name to match DataFrame index
model_name_lower = model_name.lower()
# Filter historical data for this model
model_data = historical_df[historical_df.index == model_name_lower].copy()
if model_data.empty:
return None
# Sort by date (oldest first)
model_data = model_data.sort_values('date')
# Check each date for this failure
for idx, row in model_data.iterrows():
failures = row.get(f'failures_{device}', None)
if failures is None or pd.isna(failures):
continue
# Handle case where failures might be a string (JSON)
if isinstance(failures, str):
try:
import json
failures = json.loads(failures)
except:
continue
# Check if this test appears in the failures for this gpu_type
if gpu_type in failures:
for test in failures[gpu_type]:
test_line = test.get('line', '')
if test_line == test_name:
# Found the first occurrence
return row.get('date', None)
return None
except Exception as e:
logger.error(f"Error finding first seen date for {test_name}: {e}")
return None
def find_new_regressions(current_df: pd.DataFrame, historical_df: pd.DataFrame) -> list[dict]:
"""
Compare CURRENT failures against PREVIOUS day's failures to find NEW regressions.
A regression is a test that:
- Is failing in the CURRENT/LATEST run (current_df)
- Was NOT failing in the PREVIOUS run (yesterday in historical_df)
"""
if current_df.empty or historical_df.empty:
return []
new_regressions = []
# Get the most recent date from historical data (this is "yesterday")
available_dates = sorted(historical_df['date'].unique(), reverse=True)
if len(available_dates) < 1:
# No history to compare against
return []
yesterday_date = available_dates[0]
yesterday_data = historical_df[historical_df['date'] == yesterday_date]
# For each model in current data, compare against yesterday
for model_name in current_df.index:
model_name_lower = model_name.lower()
# Get CURRENT failures from current_df
current_row = current_df.loc[model_name]
# Get YESTERDAY's failures from historical_df
yesterday_row = yesterday_data[yesterday_data.index == model_name_lower]
yesterday_failures_amd = {}
yesterday_failures_nvidia = {}
if not yesterday_row.empty:
yesterday_row = yesterday_row.iloc[0]
yesterday_failures_amd = yesterday_row.get('failures_amd', {})
yesterday_failures_nvidia = yesterday_row.get('failures_nvidia', {})
# Handle string/dict conversion
if isinstance(yesterday_failures_amd, str):
try:
yesterday_failures_amd = json.loads(yesterday_failures_amd)
except:
yesterday_failures_amd = {}
if isinstance(yesterday_failures_nvidia, str):
try:
yesterday_failures_nvidia = json.loads(yesterday_failures_nvidia)
except:
yesterday_failures_nvidia = {}
# Get CURRENT failures
current_failures_amd = current_row.get('failures_amd', {})
current_failures_nvidia = current_row.get('failures_nvidia', {})
# Handle string/dict conversion
if isinstance(current_failures_amd, str):
try:
current_failures_amd = json.loads(current_failures_amd)
except:
current_failures_amd = {}
if isinstance(current_failures_nvidia, str):
try:
current_failures_nvidia = json.loads(current_failures_nvidia)
except:
current_failures_nvidia = {}
# Check AMD failures - find tests failing NOW but NOT yesterday
for gpu_type in ['single', 'multi']:
current_tests = current_failures_amd.get(gpu_type, [])
yesterday_tests = yesterday_failures_amd.get(gpu_type, [])
# Get test names
current_test_names = {test.get('line', '') for test in current_tests}
yesterday_test_names = {test.get('line', '') for test in yesterday_tests}
# Find NEW failures: failing NOW but NOT yesterday
new_tests = current_test_names - yesterday_test_names
for test_name in new_tests:
if test_name: # Skip empty names
new_regressions.append({
'model': model_name,
'test': test_name.split('::')[-1], # Short name
'test_full': test_name, # Full name
'device': 'amd',
'gpu_type': gpu_type
})
# Check NVIDIA failures - find tests failing NOW but NOT yesterday
for gpu_type in ['single', 'multi']:
current_tests = current_failures_nvidia.get(gpu_type, [])
yesterday_tests = yesterday_failures_nvidia.get(gpu_type, [])
# Get test names
current_test_names = {test.get('line', '') for test in current_tests}
yesterday_test_names = {test.get('line', '') for test in yesterday_tests}
# Find NEW failures: failing NOW but NOT yesterday
new_tests = current_test_names - yesterday_test_names
for test_name in new_tests:
if test_name: # Skip empty names
new_regressions.append({
'model': model_name,
'test': test_name.split('::')[-1], # Short name
'test_full': test_name, # Full name
'device': 'nvidia',
'gpu_type': gpu_type
})
return new_regressions
def extract_model_data(row: pd.Series) -> tuple[dict[str, int], dict[str, int], int, int, int, int]:
"""Extract and process model data from DataFrame row."""
# Handle missing values and get counts directly from dataframe
success_nvidia = safe_extract(row, "success_nvidia")
success_amd = safe_extract(row, "success_amd")
skipped_nvidia = safe_extract(row, "skipped_nvidia")
skipped_amd = safe_extract(row, "skipped_amd")
failed_multi_amd = safe_extract(row, 'failed_multi_no_amd')
failed_multi_nvidia = safe_extract(row, 'failed_multi_no_nvidia')
failed_single_amd = safe_extract(row, 'failed_single_no_amd')
failed_single_nvidia = safe_extract(row, 'failed_single_no_nvidia')
# Calculate total failures
total_failed_amd = failed_multi_amd + failed_single_amd
total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia
# Create stats dictionaries directly from dataframe values
amd_stats = {
'passed': success_amd,
'failed': total_failed_amd,
'skipped': skipped_amd,
'error': 0 # Not available in this dataset
}
nvidia_stats = {
'passed': success_nvidia,
'failed': total_failed_nvidia,
'skipped': skipped_nvidia,
'error': 0 # Not available in this dataset
}
return amd_stats, nvidia_stats, failed_multi_amd, failed_single_amd, failed_multi_nvidia, failed_single_nvidia
class CIResults:
def __init__(self):
self.df = pd.DataFrame()
self.available_models = []
self.latest_update_msg = ""
self.available_dates = []
self.historical_df = pd.DataFrame()
self.all_historical_data = pd.DataFrame() # Store all historical data at startup
self.sample_data = False
def load_data(self) -> None:
"""Load data from the data source."""
# Try loading the distant data, and fall back on sample data for local tinkering
try:
logger.info("Loading distant data...")
new_df, latest_update_msg = get_distant_data()
self.latest_update_msg = latest_update_msg
self.available_dates = get_available_dates()
logger.info(f"Available dates: {len(self.available_dates)} dates")
if self.available_dates:
logger.info(f"Date range: {self.available_dates[-1]} to {self.available_dates[0]}")
else:
logger.warning("No available dates found")
self.available_dates = []
except Exception as e:
error_msg = [
"Loading data failed:",
"-" * 120,
traceback.format_exc(),
"-" * 120,
"Falling back on sample data."
]
logger.error("\n".join(error_msg))
self.sample_data = True
new_df, latest_update_msg = get_sample_data()
self.latest_update_msg = latest_update_msg
self.available_dates = None
# Update attributes
self.df = new_df
self.available_models = new_df.index.tolist()
# Load all historical data at startup
self.load_all_historical_data()
# Log and return distant load status
logger.info(f"Data loaded successfully: {len(self.available_models)} models")
logger.info(f"Models: {self.available_models[:5]}{'...' if len(self.available_models) > 5 else ''}")
logger.info(f"Latest update message: {self.latest_update_msg}")
# Log a preview of the df
msg = {}
for model in self.available_models[:3]:
msg[model] = {}
for col in self.df.columns:
value = self.df.loc[model, col]
if not isinstance(value, int):
value = str(value)
if len(value) > 10:
value = value[:10] + "..."
msg[model][col] = value
logger.info(json.dumps(msg, indent=4))
def load_all_historical_data(self) -> None:
"""Load all available historical data at startup."""
try:
if not self.available_dates:
# Generate fake dates when no real dates are available
fake_dates = []
today = datetime.now()
for i in range(7):
date = today - timedelta(days=i)
fake_dates.append(date.strftime("%Y-%m-%d"))
self.available_dates = fake_dates
logger.info(f"No available dates found, generated {len(self.available_dates)} sample dates.")
logger.info(f"Loading all historical data for {len(self.available_dates)} dates...")
start_date = self.available_dates[-1] # Oldest date
end_date = self.available_dates[0] # Newest date
self.all_historical_data = get_historical_data(start_date, end_date, self.sample_data)
logger.info(f"All historical data loaded: {len(self.all_historical_data)} records")
except Exception as e:
logger.error(f"Error loading all historical data: {e}")
self.all_historical_data = pd.DataFrame()
def load_historical_data(self, start_date: str, end_date: str) -> None:
"""Load historical data for a date range from pre-loaded data."""
try:
logger.info(f"Filtering historical data from {start_date} to {end_date}")
if self.all_historical_data.empty:
logger.warning("No pre-loaded historical data available")
self.historical_df = pd.DataFrame()
return
# Filter the pre-loaded data by date range
start_dt = datetime.strptime(start_date, "%Y-%m-%d")
end_dt = datetime.strptime(end_date, "%Y-%m-%d")
# Filter data within the date range
filtered_data = []
for date_str in self.all_historical_data['date'].unique():
date_dt = datetime.strptime(date_str, "%Y-%m-%d")
if start_dt <= date_dt <= end_dt:
date_data = self.all_historical_data[self.all_historical_data['date'] == date_str]
filtered_data.append(date_data)
if filtered_data:
self.historical_df = pd.concat(filtered_data, ignore_index=False)
logger.info(f"Historical data filtered: {len(self.historical_df)} records for {start_date} to {end_date}")
else:
self.historical_df = pd.DataFrame()
logger.warning(f"No historical data found for date range {start_date} to {end_date}")
except Exception as e:
logger.error(f"Error filtering historical data: {e}")
self.historical_df = pd.DataFrame()
def schedule_data_reload(self):
"""Schedule the next data reload."""
def reload_data():
self.load_data()
# Schedule the next reload in 15 minutes (900 seconds)
timer = threading.Timer(900.0, reload_data)
timer.daemon = True # Dies when main thread dies
timer.start()
logger.info("Next data reload scheduled in 15 minutes")
# Start the first reload timer
timer = threading.Timer(900.0, reload_data)
timer.daemon = True
timer.start()
logger.info("Data auto-reload scheduled every 15 minutes")
|