ror's picture
ror HF Staff
Added the summary page, issues with component height
c95a637
raw
history blame
29 kB
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import gradio as gr
# Configure matplotlib to prevent memory warnings and set dark background
matplotlib.rcParams['figure.max_open_warning'] = 0
matplotlib.rcParams['figure.facecolor'] = '#000000'
matplotlib.rcParams['axes.facecolor'] = '#000000'
matplotlib.rcParams['savefig.facecolor'] = '#000000'
plt.ioff() # Turn off interactive mode to prevent figure accumulation
# Sample test results with test names
MODELS = {
"llama": {
"amd": {
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore"],
"failed": ["network_timeout"],
"skipped": ["gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "distributed", "multi_gpu"],
"error": []
},
"nvidia": {
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
"failed": ["network_timeout", "distributed"],
"skipped": ["multi_gpu"],
"error": []
}
},
"gemma3": {
"amd": {
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch", "env_vars", "secrets_mgmt", "tls_cert", "encryption", "compression", "serialization", "deserialization", "validation"],
"failed": ["gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "distributed", "multi_gpu", "opencl_init", "driver_conflict", "memory_bandwidth", "compute_units", "rocm_version", "hip_compile", "kernel_launch", "buffer_transfer", "atomic_ops", "wavefront_sync"],
"skipped": ["perf_test", "stress_test", "load_test", "endurance", "benchmark", "profiling", "memory_leak", "cpu_usage", "disk_io", "network_bw", "latency", "throughput"],
"error": []
},
"nvidia": {
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch", "env_vars", "secrets_mgmt", "tls_cert", "encryption", "compression", "serialization", "deserialization", "validation", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
"failed": ["distributed", "multi_gpu", "cuda_version", "nvcc_compile", "stream_sync", "device_reset", "peer_access", "unified_memory", "texture_bind", "surface_write", "constant_mem", "shared_mem"],
"skipped": ["perf_test", "stress_test", "load_test", "endurance", "benchmark", "profiling", "memory_leak", "cpu_usage", "disk_io", "network_bw"],
"error": []
}
},
"csm": {
"amd": {
"passed": [],
"failed": [],
"skipped": [],
"error": ["system_crash"]
},
"nvidia": {
"passed": [],
"failed": [],
"skipped": [],
"error": ["system_crash"]
}
}
}
def generate_underlined_line(text: str) -> str:
return text + "\n" + "─" * len(text) + "\n"
def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]:
"""Draws a pie chart of model's passed, failed, skipped, and error stats."""
model_stats = MODELS[model_name]
# Softer color palette - less pastel, more vibrant
colors = {
'passed': '#4CAF50', # Medium green
'failed': '#E53E3E', # More red
'skipped': '#FFD54F', # Medium yellow
'error': '#8B0000' # Dark red
}
# Convert test lists to counts for chart display
amd_stats = {k: len(v) for k, v in model_stats['amd'].items()}
nvidia_stats = {k: len(v) for k, v in model_stats['nvidia'].items()}
# Filter out categories with 0 values for cleaner visualization
amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0}
if not amd_filtered and not nvidia_filtered:
# Handle case where all values are 0 - minimal empty state
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
ax.set_facecolor('#000000')
ax.text(0.5, 0.5, 'No test results available',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=16, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
return fig, "", ""
# Create figure with two subplots side by side with padding
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 9), facecolor='#000000')
ax1.set_facecolor('#000000')
ax2.set_facecolor('#000000')
def create_pie_chart(ax, device_label, filtered_stats):
if not filtered_stats:
ax.text(0.5, 0.5, 'No test results',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=14, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_title(device_label,
fontsize=28, weight='bold', pad=2, color='#FFFFFF',
fontfamily='monospace')
ax.axis('off')
return
chart_colors = [colors[category] for category in filtered_stats.keys()]
# Create minimal pie chart - full pie, no donut effect
wedges, texts, autotexts = ax.pie(
filtered_stats.values(),
labels=[label.lower() for label in filtered_stats.keys()], # Lowercase for minimal look
colors=chart_colors,
autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}',
startangle=90,
explode=None, # No separation
shadow=False,
wedgeprops=dict(edgecolor='#1a1a1a', linewidth=0.5), # Minimal borders
textprops={'fontsize': 12, 'weight': 'normal', 'color': '#CCCCCC', 'fontfamily': 'monospace'}
)
# Enhanced percentage text styling for better readability
for autotext in autotexts:
autotext.set_color('#000000') # Black text for better contrast
autotext.set_weight('bold')
autotext.set_fontsize(14)
autotext.set_fontfamily('monospace')
# Minimal category labels
for text in texts:
text.set_color('#AAAAAA')
text.set_weight('normal')
text.set_fontsize(13)
text.set_fontfamily('monospace')
# Device label closer to chart and bigger
ax.set_title(device_label,
fontsize=28, weight='normal', pad=2, color='#FFFFFF',
fontfamily='monospace')
# Create both pie charts with device labels
create_pie_chart(ax1, "amd", amd_filtered)
create_pie_chart(ax2, "nvidia", nvidia_filtered)
# Add subtle separation line between charts - stops at device labels level
line_x = 0.5
fig.add_artist(plt.Line2D([line_x, line_x], [0.0, 0.85],
color='#333333', linewidth=1, alpha=0.5,
transform=fig.transFigure))
# Add central shared title for model name
fig.suptitle(f'{model_name.lower()}',
fontsize=32, weight='bold', color='#CCCCCC',
fontfamily='monospace', y=0.95)
# Clean layout with padding and space for central title
plt.tight_layout()
plt.subplots_adjust(top=0.85, wspace=0.4) # Added wspace for padding between charts
# Generate separate failed tests info for AMD and NVIDIA with exclusive/common separation
amd_failed = set(model_stats['amd']['failed'])
nvidia_failed = set(model_stats['nvidia']['failed'])
# Find exclusive and common failures
amd_exclusive = amd_failed - nvidia_failed
nvidia_exclusive = nvidia_failed - amd_failed
common_failures = amd_failed & nvidia_failed
# Build AMD info
amd_failed_info = ""
if not amd_exclusive and not common_failures:
msg = "Error(s) detected" if model_stats["amd"]["error"] else "No failures"
amd_failed_info += generate_underlined_line(msg)
if amd_exclusive:
amd_failed_info += generate_underlined_line("Failures on AMD (exclusive):")
amd_failed_info += "\n".join(sorted(amd_exclusive))
amd_failed_info += "\n\n" if common_failures else ""
if common_failures:
amd_failed_info += generate_underlined_line("Failures on AMD (common):")
amd_failed_info += "\n".join(sorted(common_failures))
# Build NVIDIA info
nvidia_failed_info = ""
if not nvidia_exclusive and not common_failures:
msg = "Error(s) detected" if model_stats["nvidia"]["error"] else "No failures"
nvidia_failed_info += generate_underlined_line(msg)
if nvidia_exclusive:
nvidia_failed_info += generate_underlined_line("Failures on NVIDIA (exclusive):")
nvidia_failed_info += "\n".join(sorted(nvidia_exclusive))
nvidia_failed_info += "\n\n" if common_failures else ""
if common_failures:
nvidia_failed_info += generate_underlined_line("Failures on NVIDIA (common):")
nvidia_failed_info += "\n".join(sorted(common_failures))
return fig, amd_failed_info, nvidia_failed_info
def get_model_stats_summary(model_name: str) -> tuple:
"""Get summary stats for a model (total tests, success rate, status indicator)."""
stats = MODELS[model_name]
# Combine AMD and NVIDIA results
total_passed = len(stats['amd']['passed']) + len(stats['nvidia']['passed'])
total_failed = len(stats['amd']['failed']) + len(stats['nvidia']['failed'])
total_skipped = len(stats['amd']['skipped']) + len(stats['nvidia']['skipped'])
total_error = len(stats['amd']['error']) + len(stats['nvidia']['error'])
total = total_passed + total_failed + total_skipped + total_error
success_rate = (total_passed / total * 100) if total > 0 else 0
# Determine status indicator color
if success_rate >= 80:
status_class = "success-high"
elif success_rate >= 50:
status_class = "success-medium"
else:
status_class = "success-low"
return total, success_rate, status_class
def create_summary_page() -> plt.Figure:
"""Create a summary page with model names and both AMD/NVIDIA test stats bars."""
fig, ax = plt.subplots(figsize=(12, len(MODELS) * 4 + 1), facecolor='#000000')
ax.set_facecolor('#000000')
colors = {
'passed': '#4CAF50',
'failed': '#E53E3E',
'skipped': '#FFD54F',
'error': '#8B0000'
}
for i, (model_name, model_data) in enumerate(MODELS.items()):
# Process AMD and NVIDIA data
amd_stats = {k: len(v) for k, v in model_data['amd'].items()}
amd_total = sum(amd_stats.values())
nvidia_stats = {k: len(v) for k, v in model_data['nvidia'].items()}
nvidia_total = sum(nvidia_stats.values())
if amd_total == 0 and nvidia_total == 0:
continue
# Position for this model - tighter spacing between groups
y_base = (len(MODELS) - i - 1) * 3.2
y_amd_text = y_base + 2.0 # AMD label
y_amd_bar = y_base + 1.5 # AMD bar
y_nvidia_text = y_base + 0.8 # NVIDIA label
y_nvidia_bar = y_base + 0.3 # NVIDIA bar
# AMD bar and label
if amd_total > 0:
ax.text(0, y_amd_text, f"{model_name.lower()} - AMD",
ha='left', va='center', color='#FFFFFF',
fontsize=24, fontfamily='monospace', fontweight='normal')
left = 0
for category in ['passed', 'failed', 'skipped', 'error']:
if amd_stats[category] > 0:
width = amd_stats[category] / amd_total * 100
ax.barh(y_amd_bar, width, left=left, height=0.45,
color=colors[category], alpha=0.9)
if width > 6:
ax.text(left + width/2, y_amd_bar, str(amd_stats[category]),
ha='center', va='center', color='black',
fontweight='bold', fontsize=10, fontfamily='monospace')
left += width
# NVIDIA bar and label
if nvidia_total > 0:
ax.text(0, y_nvidia_text, f"{model_name.lower()} - NVIDIA",
ha='left', va='center', color='#FFFFFF',
fontsize=24, fontfamily='monospace', fontweight='normal')
left = 0
for category in ['passed', 'failed', 'skipped', 'error']:
if nvidia_stats[category] > 0:
width = nvidia_stats[category] / nvidia_total * 100
ax.barh(y_nvidia_bar, width, left=left, height=0.45,
color=colors[category], alpha=0.9)
if width > 6:
ax.text(left + width/2, y_nvidia_bar, str(nvidia_stats[category]),
ha='center', va='center', color='black',
fontweight='bold', fontsize=10, fontfamily='monospace')
left += width
# Style the axes to be completely invisible and span full width
ax.set_xlim(0, 100)
ax.set_ylim(-1, len(MODELS) * 3.2)
ax.set_xlabel('')
ax.set_ylabel('')
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set_xticks([])
ax.set_yticks([])
# Remove all margins to make bars span full width
plt.tight_layout()
plt.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02)
return fig
# Custom CSS for dark theme
dark_theme_css = """
/* Global dark theme */
.gradio-container {
background-color: #000000 !important;
color: white !important;
}
/* Remove borders from all components */
.gr-box, .gr-form, .gr-panel {
border: none !important;
background-color: #000000 !important;
}
/* Sidebar styling */
.sidebar {
background: linear-gradient(145deg, #111111, #1a1a1a) !important;
border: none !important;
padding: 25px !important;
box-shadow: inset 2px 2px 5px rgba(0, 0, 0, 0.3) !important;
margin: 0 !important;
height: 100vh !important;
position: fixed !important;
left: 0 !important;
top: 0 !important;
width: 300px !important;
}
/* Enhanced model button styling */
.model-button {
background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
color: white !important;
border: 2px solid transparent !important;
margin: 2px 0 !important;
border-radius: 5px !important;
padding: 8px 12px !important;
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1) !important;
position: relative !important;
overflow: hidden !important;
box-shadow:
0 4px 15px rgba(0, 0, 0, 0.2),
inset 0 1px 0 rgba(255, 255, 255, 0.1) !important;
font-weight: 600 !important;
font-size: 16px !important;
text-transform: uppercase !important;
letter-spacing: 0.5px !important;
font-family: monospace !important;
}
.model-button:hover {
background: linear-gradient(135deg, #3a3a3a, #2e2e2e) !important;
color: #74b9ff !important;
}
.model-button:active {
background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
color: #5a9bd4 !important;
}
/* Model stats badge */
.model-stats {
display: flex !important;
justify-content: space-between !important;
align-items: center !important;
margin-top: 8px !important;
font-size: 12px !important;
opacity: 0.8 !important;
}
.stats-badge {
background: rgba(116, 185, 255, 0.2) !important;
padding: 4px 8px !important;
border-radius: 10px !important;
font-weight: 500 !important;
font-size: 11px !important;
color: #74b9ff !important;
}
.success-indicator {
width: 8px !important;
height: 8px !important;
border-radius: 50% !important;
display: inline-block !important;
margin-right: 6px !important;
}
.success-high { background-color: #4CAF50 !important; }
.success-medium { background-color: #FF9800 !important; }
.success-low { background-color: #F44336 !important; }
/* Regular button styling for non-model buttons */
.gr-button:not(.model-button) {
background-color: #222222 !important;
color: white !important;
border: 1px solid #444444 !important;
margin: 5px 0 !important;
border-radius: 8px !important;
transition: all 0.3s ease !important;
}
.gr-button:not(.model-button):hover {
background-color: #333333 !important;
border-color: #666666 !important;
}
/* Plot container with smooth transitions and controlled scrolling */
.plot-container {
background-color: #000000 !important;
border: none !important;
transition: opacity 0.6s ease-in-out !important;
max-height: 70vh !important;
overflow-y: auto !important;
scrollbar-width: thin !important;
scrollbar-color: #333333 #000000 !important;
}
/* Custom scrollbar for plot container */
.plot-container::-webkit-scrollbar {
width: 8px !important;
background: #000000 !important;
}
.plot-container::-webkit-scrollbar-track {
background: #000000 !important;
}
.plot-container::-webkit-scrollbar-thumb {
background-color: #333333 !important;
border-radius: 4px !important;
}
.plot-container::-webkit-scrollbar-thumb:hover {
background-color: #555555 !important;
}
/* Gradio plot component styling */
.gr-plot {
background-color: #000000 !important;
transition: opacity 0.6s ease-in-out !important;
}
.gr-plot .gradio-plot {
background-color: #000000 !important;
transition: opacity 0.6s ease-in-out !important;
}
.gr-plot img {
transition: opacity 0.6s ease-in-out !important;
}
/* Target the plot wrapper */
div[data-testid="plot"] {
background-color: #000000 !important;
}
/* Target all possible plot containers */
.plot-container img,
.gr-plot img,
.gradio-plot img {
background-color: #000000 !important;
}
/* Ensure plot area background */
.gr-plot > div,
.plot-container > div {
background-color: #000000 !important;
}
/* Prevent white flash during plot updates */
.plot-container::before {
content: "";
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #000000;
z-index: -1;
}
/* Force all plot elements to have black background */
.plot-container *,
.gr-plot *,
div[data-testid="plot"] * {
background-color: #000000 !important;
}
/* Override any white backgrounds in matplotlib */
.plot-container canvas,
.gr-plot canvas {
background-color: #000000 !important;
}
/* Text elements */
h1, h2, h3, p, .markdown {
color: white !important;
}
/* Sidebar header enhancement */
.sidebar h1 {
background: linear-gradient(45deg, #74b9ff, #a29bfe) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
text-align: center !important;
margin-bottom: 15px !important;
font-size: 28px !important;
font-weight: 700 !important;
font-family: monospace !important;
}
/* Sidebar description text */
.sidebar p {
text-align: center !important;
margin-bottom: 20px !important;
line-height: 1.5 !important;
font-size: 14px !important;
font-family: monospace !important;
}
.sidebar strong {
color: #74b9ff !important;
font-weight: 600 !important;
font-family: monospace !important;
}
.sidebar em {
color: #a29bfe !important;
font-style: normal !important;
opacity: 0.9 !important;
font-family: monospace !important;
}
/* Remove all borders globally */
* {
border-color: transparent !important;
}
/* Main content area */
.main-content {
background-color: #000000 !important;
padding: 20px !important;
margin-left: 300px !important;
height: 100vh !important;
overflow: hidden !important;
}
/* Custom scrollbar for main content */
.main-content {
scrollbar-width: thin !important;
scrollbar-color: #333333 #000000 !important;
}
.main-content::-webkit-scrollbar {
width: 8px !important;
background: #000000 !important;
}
.main-content::-webkit-scrollbar-track {
background: #000000 !important;
}
.main-content::-webkit-scrollbar-thumb {
background-color: #333333 !important;
border-radius: 4px !important;
}
.main-content::-webkit-scrollbar-thumb:hover {
background-color: #555555 !important;
}
/* Failed tests display - seamless appearance with fixed height */
.failed-tests textarea {
background-color: #000000 !important;
color: #FFFFFF !important;
font-family: monospace !important;
font-size: 14px !important;
border: none !important;
padding: 10px !important;
outline: none !important;
line-height: 1.4 !important;
height: 200px !important;
max-height: 200px !important;
min-height: 200px !important;
overflow-y: auto !important;
resize: none !important;
scrollbar-width: thin !important;
scrollbar-color: #333333 #000000 !important;
scroll-behavior: auto;
transition: opacity 0.5s ease-in-out !important;
}
/* WebKit scrollbar styling for failed tests */
.failed-tests textarea::-webkit-scrollbar {
width: 8px !important;
}
.failed-tests textarea::-webkit-scrollbar-track {
background: #000000 !important;
}
.failed-tests textarea::-webkit-scrollbar-thumb {
background-color: #333333 !important;
border-radius: 4px !important;
}
.failed-tests textarea::-webkit-scrollbar-thumb:hover {
background-color: #555555 !important;
}
/* Prevent white flash in text boxes during updates */
.failed-tests::before {
content: "";
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #000000;
z-index: -1;
}
.failed-tests {
background-color: #000000 !important;
height: 220px !important;
max-height: 220px !important;
position: relative;
transition: opacity 0.5s ease-in-out !important;
}
.failed-tests .gr-textbox {
background-color: #000000 !important;
border: none !important;
height: 200px !important;
max-height: 200px !important;
transition: opacity 0.5s ease-in-out !important;
}
/* Force all textbox elements to have black background */
.failed-tests *,
.failed-tests .gr-textbox *,
.failed-tests textarea * {
background-color: #000000 !important;
}
/* Summary display styling */
.summary-display textarea {
background-color: #000000 !important;
color: #FFFFFF !important;
font-family: monospace !important;
font-size: 24px !important;
border: none !important;
padding: 20px !important;
outline: none !important;
line-height: 2 !important;
text-align: right !important;
resize: none !important;
}
.summary-display {
background-color: #000000 !important;
}
/* JavaScript to reset scroll position */
.scroll-reset {
animation: resetScroll 0.1s ease;
}
@keyframes resetScroll {
0% { scroll-behavior: auto; }
100% { scroll-behavior: auto; }
}
"""
# Create the Gradio interface with sidebar and dark theme
with gr.Blocks(title="Model Test Results Dashboard", css=dark_theme_css) as demo:
with gr.Row():
# Sidebar for model selection
with gr.Column(scale=1, elem_classes=["sidebar"]):
gr.Markdown("# πŸ€– AI Models")
gr.Markdown("**Select a model to analyze test results**\n\n*Interactive dashboard with detailed metrics*")
# Summary button at the top
summary_button = gr.Button(
"summary",
variant="primary",
size="lg",
elem_classes=["model-button"]
)
# Model selection buttons in sidebar
model_buttons = []
for model_name in MODELS.keys():
btn = gr.Button(
f"{model_name.lower()}",
variant="secondary",
size="lg",
elem_classes=["model-button"]
)
model_buttons.append(btn)
# Main content area
with gr.Column(scale=4, elem_classes=["main-content"]):
# Summary display (default view)
summary_display = gr.Plot(
value=create_summary_page(),
label="",
format="png",
elem_classes=["plot-container"],
visible=True
)
# Detailed view components (hidden by default)
with gr.Column(visible=False, elem_classes=["detail-view"]) as detail_view:
gr.Markdown("# πŸ“ˆ Test Results Dashboard")
# Create the plot output
plot_output = gr.Plot(
label="",
format="png",
elem_classes=["plot-container"]
)
# Create two separate failed tests displays in a row layout
with gr.Row():
with gr.Column(scale=1):
amd_failed_tests_output = gr.Textbox(
value="Failures on AMD (exclusive):\n─────────────────────────────\nnetwork_timeout\n\nFailures on AMD (common):\n────────────────────────\ndistributed",
lines=8,
max_lines=8,
interactive=False,
container=False,
elem_classes=["failed-tests"]
)
with gr.Column(scale=1):
nvidia_failed_tests_output = gr.Textbox(
value="Failures on NVIDIA (exclusive):\n─────────────────────────────────\nmulti_gpu\n\nFailures on NVIDIA (common):\n────────────────────────────\ndistributed",
lines=8,
max_lines=8,
interactive=False,
container=False,
elem_classes=["failed-tests"]
)
# Set up click handlers for each button
for i, (model_name, button) in enumerate(zip(MODELS.keys(), model_buttons)):
button.click(
fn=lambda name=model_name: plot_model_stats(name),
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
).then(
fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
outputs=[summary_display, detail_view]
).then(
fn=None,
js="() => { setTimeout(() => { document.querySelectorAll('textarea').forEach(t => { if (t.closest('.failed-tests')) { t.scrollTop = 0; setTimeout(() => { t.style.scrollBehavior = 'smooth'; t.scrollTo({ top: 0, behavior: 'smooth' }); t.style.scrollBehavior = 'auto'; }, 50); } }); }, 300); }"
)
# Summary button click handler
summary_button.click(
fn=lambda: create_summary_page(),
outputs=[summary_display]
).then(
fn=lambda: [gr.update(visible=True), gr.update(visible=False)],
outputs=[summary_display, detail_view]
)
if __name__ == "__main__":
demo.launch()