remove some unused functions
Browse files- time_series_gradio.py +0 -70
time_series_gradio.py
CHANGED
|
@@ -7,76 +7,6 @@ import gradio as gr
|
|
| 7 |
import plotly.express as px
|
| 8 |
import plotly.graph_objects as go
|
| 9 |
|
| 10 |
-
def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict:
|
| 11 |
-
daily_stats = []
|
| 12 |
-
dates = sorted(historical_df['date'].unique())
|
| 13 |
-
|
| 14 |
-
for date in dates:
|
| 15 |
-
dd = historical_df[historical_df['date'] == date]
|
| 16 |
-
stats = {}
|
| 17 |
-
for platform in ['amd', 'nvidia']:
|
| 18 |
-
p, f, s = (dd[f'success_{platform}'].sum() if f'success_{platform}' in dd.columns else 0,
|
| 19 |
-
(dd[f'failed_multi_no_{platform}'].sum() + dd[f'failed_single_no_{platform}'].sum()) if f'failed_multi_no_{platform}' in dd.columns else 0,
|
| 20 |
-
dd[f'skipped_{platform}'].sum() if f'skipped_{platform}' in dd.columns else 0)
|
| 21 |
-
tot = p + f + s
|
| 22 |
-
stats.update({f'{platform}_passed': p, f'{platform}_failed': f, f'{platform}_skipped': s,
|
| 23 |
-
f'{platform}_failure_rate': (f / tot * 100) if tot > 0 else 0})
|
| 24 |
-
stats['date'] = date
|
| 25 |
-
daily_stats.append(stats)
|
| 26 |
-
|
| 27 |
-
failure_rate_data = []
|
| 28 |
-
for i, s in enumerate(daily_stats):
|
| 29 |
-
for p in ['amd', 'nvidia']:
|
| 30 |
-
chg = s[f'{p}_failure_rate'] - daily_stats[i-1][f'{p}_failure_rate'] if i > 0 else 0
|
| 31 |
-
failure_rate_data.append({'date': s['date'], 'failure_rate': s[f'{p}_failure_rate'],
|
| 32 |
-
'platform': p.upper(), 'change': chg})
|
| 33 |
-
|
| 34 |
-
def build_test_data(platform):
|
| 35 |
-
data = []
|
| 36 |
-
for i, s in enumerate(daily_stats):
|
| 37 |
-
for tt in ['passed', 'failed', 'skipped']:
|
| 38 |
-
chg = s[f'{platform}_{tt}'] - daily_stats[i-1][f'{platform}_{tt}'] if i > 0 else 0
|
| 39 |
-
data.append({'date': s['date'], 'count': s[f'{platform}_{tt}'],
|
| 40 |
-
'test_type': tt.capitalize(), 'change': chg})
|
| 41 |
-
return pd.DataFrame(data)
|
| 42 |
-
|
| 43 |
-
return {'failure_rates_df': pd.DataFrame(failure_rate_data),
|
| 44 |
-
'amd_tests_df': build_test_data('amd'),
|
| 45 |
-
'nvidia_tests_df': build_test_data('nvidia')}
|
| 46 |
-
|
| 47 |
-
def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> dict:
|
| 48 |
-
md = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 49 |
-
if md.empty:
|
| 50 |
-
empty = pd.DataFrame({'date': [], 'count': [], 'test_type': [], 'change': []})
|
| 51 |
-
return {'amd_df': empty.copy(), 'nvidia_df': empty.copy()}
|
| 52 |
-
|
| 53 |
-
dates = sorted(md['date'].unique())
|
| 54 |
-
|
| 55 |
-
def build_platform_data(platform):
|
| 56 |
-
data = []
|
| 57 |
-
for i, date in enumerate(dates):
|
| 58 |
-
dd = md[md['date'] == date]
|
| 59 |
-
if dd.empty:
|
| 60 |
-
continue
|
| 61 |
-
r = dd.iloc[0]
|
| 62 |
-
p = r.get(f'success_{platform}', 0)
|
| 63 |
-
f = r.get(f'failed_multi_no_{platform}', 0) + r.get(f'failed_single_no_{platform}', 0)
|
| 64 |
-
s = r.get(f'skipped_{platform}', 0)
|
| 65 |
-
|
| 66 |
-
pr = md[md['date'] == dates[i-1]].iloc[0] if i > 0 and not md[md['date'] == dates[i-1]].empty else None
|
| 67 |
-
pc = pr.get(f'success_{platform}', 0) if pr is not None else 0
|
| 68 |
-
fc = (pr.get(f'failed_multi_no_{platform}', 0) + pr.get(f'failed_single_no_{platform}', 0)) if pr is not None else 0
|
| 69 |
-
sc = pr.get(f'skipped_{platform}', 0) if pr is not None else 0
|
| 70 |
-
|
| 71 |
-
data.extend([
|
| 72 |
-
{'date': date, 'count': p, 'test_type': 'Passed', 'change': p - pc},
|
| 73 |
-
{'date': date, 'count': f, 'test_type': 'Failed', 'change': f - fc},
|
| 74 |
-
{'date': date, 'count': s, 'test_type': 'Skipped', 'change': s - sc}
|
| 75 |
-
])
|
| 76 |
-
return pd.DataFrame(data)
|
| 77 |
-
|
| 78 |
-
return {'amd_df': build_platform_data('amd'), 'nvidia_df': build_platform_data('nvidia')}
|
| 79 |
-
|
| 80 |
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
| 81 |
empty_fig = lambda title: go.Figure().update_layout(title=title, height=500,
|
| 82 |
font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
|
|
|
|
| 7 |
import plotly.express as px
|
| 8 |
import plotly.graph_objects as go
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
| 11 |
empty_fig = lambda title: go.Figure().update_layout(title=title, height=500,
|
| 12 |
font=dict(size=16, color='#CCCCCC'), paper_bgcolor='#000000',
|