Spaces:
Running
on
Zero
Running
on
Zero
add optimization history from json plot
Browse files
plots.py
CHANGED
|
@@ -1,5 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import matplotlib.pyplot as plt
|
| 2 |
import numpy as np
|
|
|
|
| 3 |
from keras import ops
|
| 4 |
from matplotlib.patches import PathPatch
|
| 5 |
from matplotlib.path import Path as pltPath
|
|
@@ -252,3 +257,99 @@ def plot_metrics(metrics, limits, out_path):
|
|
| 252 |
bbox_to_anchor=(0.5, 1.02),
|
| 253 |
)
|
| 254 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import Any, Dict, List
|
| 4 |
+
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import numpy as np
|
| 7 |
+
import tyro
|
| 8 |
from keras import ops
|
| 9 |
from matplotlib.patches import PathPatch
|
| 10 |
from matplotlib.path import Path as pltPath
|
|
|
|
| 257 |
bbox_to_anchor=(0.5, 1.02),
|
| 258 |
)
|
| 259 |
return fig
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def plot_optimization_history_from_json(
|
| 263 |
+
trials_data: List[Dict[str, Any]], output_path: Path, method: str
|
| 264 |
+
):
|
| 265 |
+
"""Plot optimization history directly from JSON data."""
|
| 266 |
+
|
| 267 |
+
# Extract completed trials with values
|
| 268 |
+
completed_trials = [
|
| 269 |
+
t for t in trials_data if t["state"] == "COMPLETE" and t["value"] is not None
|
| 270 |
+
]
|
| 271 |
+
|
| 272 |
+
if not completed_trials:
|
| 273 |
+
print("No completed trials found!")
|
| 274 |
+
return
|
| 275 |
+
|
| 276 |
+
# Sort by trial number
|
| 277 |
+
completed_trials.sort(key=lambda x: x["number"])
|
| 278 |
+
|
| 279 |
+
trial_numbers = [t["number"] for t in completed_trials]
|
| 280 |
+
values = [t["value"] for t in completed_trials]
|
| 281 |
+
|
| 282 |
+
# Apply seaborn styling
|
| 283 |
+
plt.style.use("seaborn-v0_8-darkgrid")
|
| 284 |
+
|
| 285 |
+
# Create the plot
|
| 286 |
+
fig, ax = plt.subplots(figsize=(5, 3), dpi=600)
|
| 287 |
+
|
| 288 |
+
# Plot all trial values with styling similar to plots.py
|
| 289 |
+
ax.scatter(
|
| 290 |
+
trial_numbers,
|
| 291 |
+
values,
|
| 292 |
+
c="#0057b7",
|
| 293 |
+
alpha=0.6,
|
| 294 |
+
s=30,
|
| 295 |
+
edgecolor="black",
|
| 296 |
+
linewidth=0.5,
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
# Plot best value so far
|
| 300 |
+
best_values = []
|
| 301 |
+
current_best = values[0]
|
| 302 |
+
for val in values:
|
| 303 |
+
if val > current_best: # Assuming maximization
|
| 304 |
+
current_best = val
|
| 305 |
+
best_values.append(current_best)
|
| 306 |
+
|
| 307 |
+
ax.plot(
|
| 308 |
+
trial_numbers,
|
| 309 |
+
best_values,
|
| 310 |
+
color="#d62d20",
|
| 311 |
+
linewidth=2.5,
|
| 312 |
+
label="Best Value",
|
| 313 |
+
marker="o",
|
| 314 |
+
markersize=4,
|
| 315 |
+
markevery=max(1, len(trial_numbers) // 20),
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
ax.set_xlabel("Trial", fontsize=11)
|
| 319 |
+
ax.set_ylabel("Objective Value", fontsize=11)
|
| 320 |
+
# ax.set_title("Optimization History", fontsize=12)
|
| 321 |
+
ax.legend(fontsize=10, frameon=False)
|
| 322 |
+
|
| 323 |
+
# Remove top and right spines like in plots.py
|
| 324 |
+
ax.spines["top"].set_visible(False)
|
| 325 |
+
ax.spines["right"].set_visible(False)
|
| 326 |
+
ax.tick_params(axis="both", which="major", labelsize=9)
|
| 327 |
+
|
| 328 |
+
# Save plot
|
| 329 |
+
fig.savefig(
|
| 330 |
+
output_path / f"optimization_history_{method}.png", dpi=600, bbox_inches="tight"
|
| 331 |
+
)
|
| 332 |
+
plt.close(fig)
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def main(json_file: str, output_dir: str = "plots", method: str = "semantic_dps"):
|
| 336 |
+
json_path = Path(json_file)
|
| 337 |
+
if not json_path.exists():
|
| 338 |
+
raise FileNotFoundError(f"JSON file not found: {json_file}")
|
| 339 |
+
|
| 340 |
+
# Load trial data
|
| 341 |
+
with open(json_path, "r") as f:
|
| 342 |
+
trials_data = json.load(f)
|
| 343 |
+
|
| 344 |
+
print(f"Loaded {len(trials_data)} trials from {json_file}")
|
| 345 |
+
|
| 346 |
+
# Create output directory
|
| 347 |
+
output_path = Path(output_dir)
|
| 348 |
+
output_path.mkdir(parents=True, exist_ok=True)
|
| 349 |
+
|
| 350 |
+
print("Generating optimization history plot...")
|
| 351 |
+
plot_optimization_history_from_json(trials_data, output_path, method)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
if __name__ == "__main__":
|
| 355 |
+
tyro.cli(main)
|