|
|
from langchain_pinecone import PineconeVectorStore |
|
|
from pinecone import Pinecone, ServerlessSpec |
|
|
from google import genai |
|
|
from langchain.embeddings.base import Embeddings |
|
|
import os |
|
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
|
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY")) |
|
|
index_name = "rag-chatbot" |
|
|
|
|
|
|
|
|
if index_name not in pc.list_indexes().names(): |
|
|
pc.create_index( |
|
|
name=index_name, |
|
|
dimension=3072, |
|
|
metric="cosine", |
|
|
spec=ServerlessSpec(cloud="aws", region="us-east-1") |
|
|
) |
|
|
|
|
|
def create_retriever(chunks, embeddings): |
|
|
|
|
|
index = pc.Index(index_name) |
|
|
|
|
|
|
|
|
stats = index.describe_index_stats() |
|
|
|
|
|
|
|
|
if 'namespaces' in stats and len(stats['namespaces']) > 0: |
|
|
index.delete(delete_all=True, namespace="") |
|
|
|
|
|
vector_store = PineconeVectorStore.from_documents( |
|
|
chunks, embeddings, index_name=index_name, namespace="" |
|
|
) |
|
|
return vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) |
|
|
|
|
|
def load_retriever(embeddings): |
|
|
vector_store = PineconeVectorStore.from_existing_index(index_name, embeddings, namespace="") |
|
|
return vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) |