Duc Trung
init backend
ee00031
raw
history blame
2.18 kB
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
import os
from dotenv import load_dotenv
from utils.uploadFilePDFtoMD import convert_pdf_to_md
from utils.vectorDB import create_retriever, load_retriever
from utils.chunking import split_text_by_markdown
from langchain_community.embeddings import HuggingFaceEmbeddings
from utils.llm import ask_question
from pydantic import BaseModel
class QueryRequest(BaseModel):
question: str
load_dotenv()
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["https://*.streamlit.app"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
@app.post("/uploadfile/")
async def upload_file(file: UploadFile = File(...)):
if not file.filename.endswith(".pdf"):
raise HTTPException(status_code=400, detail="Only PDF files are supported.")
# Save uploaded file temporarily
temp_dir = "temp"
os.makedirs(temp_dir, exist_ok=True)
temp_path = os.path.join(temp_dir, file.filename)
with open(temp_path, "wb") as f:
f.write(await file.read())
try:
md = convert_pdf_to_md(temp_path)
chunks = split_text_by_markdown(md)
retriever = create_retriever(chunks, embeddings)
os.remove(temp_path)
return {"message": "File processed and vector store created successfully."}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query")
async def query(request: QueryRequest):
try:
retriever = load_retriever(embeddings)
retrieved_docs = retriever.invoke(request.question) # Access via request.question
context = "\n\n".join([doc.page_content for doc in retrieved_docs])
answer = ask_question(request.question, context)
return {"question": request.question, "answer": answer}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 8000)))