Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import numpy as np | |
| from IPython import embed | |
| from .base_color import * | |
| class ECCVGenerator(BaseColor): | |
| def __init__(self, norm_layer=nn.BatchNorm2d): | |
| super(ECCVGenerator, self).__init__() | |
| model1=[nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model1+=[nn.ReLU(True),] | |
| model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=True),] | |
| model1+=[nn.ReLU(True),] | |
| model1+=[norm_layer(64),] | |
| model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model2+=[nn.ReLU(True),] | |
| model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=True),] | |
| model2+=[nn.ReLU(True),] | |
| model2+=[norm_layer(128),] | |
| model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model3+=[nn.ReLU(True),] | |
| model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model3+=[nn.ReLU(True),] | |
| model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True),] | |
| model3+=[nn.ReLU(True),] | |
| model3+=[norm_layer(256),] | |
| model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model4+=[nn.ReLU(True),] | |
| model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model4+=[nn.ReLU(True),] | |
| model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model4+=[nn.ReLU(True),] | |
| model4+=[norm_layer(512),] | |
| model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
| model5+=[nn.ReLU(True),] | |
| model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
| model5+=[nn.ReLU(True),] | |
| model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
| model5+=[nn.ReLU(True),] | |
| model5+=[norm_layer(512),] | |
| model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
| model6+=[nn.ReLU(True),] | |
| model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
| model6+=[nn.ReLU(True),] | |
| model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
| model6+=[nn.ReLU(True),] | |
| model6+=[norm_layer(512),] | |
| model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model7+=[nn.ReLU(True),] | |
| model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model7+=[nn.ReLU(True),] | |
| model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model7+=[nn.ReLU(True),] | |
| model7+=[norm_layer(512),] | |
| model8=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True),] | |
| model8+=[nn.ReLU(True),] | |
| model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model8+=[nn.ReLU(True),] | |
| model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model8+=[nn.ReLU(True),] | |
| model8+=[nn.Conv2d(256, 313, kernel_size=1, stride=1, padding=0, bias=True),] | |
| self.model1 = nn.Sequential(*model1) | |
| self.model2 = nn.Sequential(*model2) | |
| self.model3 = nn.Sequential(*model3) | |
| self.model4 = nn.Sequential(*model4) | |
| self.model5 = nn.Sequential(*model5) | |
| self.model6 = nn.Sequential(*model6) | |
| self.model7 = nn.Sequential(*model7) | |
| self.model8 = nn.Sequential(*model8) | |
| self.softmax = nn.Softmax(dim=1) | |
| self.model_out = nn.Conv2d(313, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=False) | |
| self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear') | |
| def forward(self, input_l): | |
| conv1_2 = self.model1(self.normalize_l(input_l)) | |
| conv2_2 = self.model2(conv1_2) | |
| conv3_3 = self.model3(conv2_2) | |
| conv4_3 = self.model4(conv3_3) | |
| conv5_3 = self.model5(conv4_3) | |
| conv6_3 = self.model6(conv5_3) | |
| conv7_3 = self.model7(conv6_3) | |
| conv8_3 = self.model8(conv7_3) | |
| out_reg = self.model_out(self.softmax(conv8_3)) | |
| return self.unnormalize_ab(self.upsample4(out_reg)) | |
| def eccv16(pretrained=True): | |
| model = ECCVGenerator() | |
| if(pretrained): | |
| import torch.utils.model_zoo as model_zoo | |
| model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/colorization_release_v2-9b330a0b.pth',map_location='cpu',check_hash=True)) | |
| return model | |