Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| from .base_color import * | |
| class SIGGRAPHGenerator(BaseColor): | |
| def __init__(self, norm_layer=nn.BatchNorm2d, classes=529): | |
| super(SIGGRAPHGenerator, self).__init__() | |
| # Conv1 | |
| model1=[nn.Conv2d(4, 64, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model1+=[nn.ReLU(True),] | |
| model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model1+=[nn.ReLU(True),] | |
| model1+=[norm_layer(64),] | |
| # add a subsampling operation | |
| # Conv2 | |
| model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model2+=[nn.ReLU(True),] | |
| model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model2+=[nn.ReLU(True),] | |
| model2+=[norm_layer(128),] | |
| # add a subsampling layer operation | |
| # Conv3 | |
| model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model3+=[nn.ReLU(True),] | |
| model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model3+=[nn.ReLU(True),] | |
| model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model3+=[nn.ReLU(True),] | |
| model3+=[norm_layer(256),] | |
| # add a subsampling layer operation | |
| # Conv4 | |
| model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model4+=[nn.ReLU(True),] | |
| model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model4+=[nn.ReLU(True),] | |
| model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model4+=[nn.ReLU(True),] | |
| model4+=[norm_layer(512),] | |
| # Conv5 | |
| model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
| model5+=[nn.ReLU(True),] | |
| model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
| model5+=[nn.ReLU(True),] | |
| model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
| model5+=[nn.ReLU(True),] | |
| model5+=[norm_layer(512),] | |
| # Conv6 | |
| model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
| model6+=[nn.ReLU(True),] | |
| model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
| model6+=[nn.ReLU(True),] | |
| model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
| model6+=[nn.ReLU(True),] | |
| model6+=[norm_layer(512),] | |
| # Conv7 | |
| model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model7+=[nn.ReLU(True),] | |
| model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model7+=[nn.ReLU(True),] | |
| model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model7+=[nn.ReLU(True),] | |
| model7+=[norm_layer(512),] | |
| # Conv7 | |
| model8up=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True)] | |
| model3short8=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model8=[nn.ReLU(True),] | |
| model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model8+=[nn.ReLU(True),] | |
| model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model8+=[nn.ReLU(True),] | |
| model8+=[norm_layer(256),] | |
| # Conv9 | |
| model9up=[nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=True),] | |
| model2short9=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),] | |
| # add the two feature maps above | |
| model9=[nn.ReLU(True),] | |
| model9+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),] | |
| model9+=[nn.ReLU(True),] | |
| model9+=[norm_layer(128),] | |
| # Conv10 | |
| model10up=[nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1, bias=True),] | |
| model1short10=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),] | |
| # add the two feature maps above | |
| model10=[nn.ReLU(True),] | |
| model10+=[nn.Conv2d(128, 128, kernel_size=3, dilation=1, stride=1, padding=1, bias=True),] | |
| model10+=[nn.LeakyReLU(negative_slope=.2),] | |
| # classification output | |
| model_class=[nn.Conv2d(256, classes, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),] | |
| # regression output | |
| model_out=[nn.Conv2d(128, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),] | |
| model_out+=[nn.Tanh()] | |
| self.model1 = nn.Sequential(*model1) | |
| self.model2 = nn.Sequential(*model2) | |
| self.model3 = nn.Sequential(*model3) | |
| self.model4 = nn.Sequential(*model4) | |
| self.model5 = nn.Sequential(*model5) | |
| self.model6 = nn.Sequential(*model6) | |
| self.model7 = nn.Sequential(*model7) | |
| self.model8up = nn.Sequential(*model8up) | |
| self.model8 = nn.Sequential(*model8) | |
| self.model9up = nn.Sequential(*model9up) | |
| self.model9 = nn.Sequential(*model9) | |
| self.model10up = nn.Sequential(*model10up) | |
| self.model10 = nn.Sequential(*model10) | |
| self.model3short8 = nn.Sequential(*model3short8) | |
| self.model2short9 = nn.Sequential(*model2short9) | |
| self.model1short10 = nn.Sequential(*model1short10) | |
| self.model_class = nn.Sequential(*model_class) | |
| self.model_out = nn.Sequential(*model_out) | |
| self.upsample4 = nn.Sequential(*[nn.Upsample(scale_factor=4, mode='bilinear'),]) | |
| self.softmax = nn.Sequential(*[nn.Softmax(dim=1),]) | |
| def forward(self, input_A, input_B=None, mask_B=None): | |
| if(input_B is None): | |
| input_B = torch.cat((input_A*0, input_A*0), dim=1) | |
| if(mask_B is None): | |
| mask_B = input_A*0 | |
| conv1_2 = self.model1(torch.cat((self.normalize_l(input_A),self.normalize_ab(input_B),mask_B),dim=1)) | |
| conv2_2 = self.model2(conv1_2[:,:,::2,::2]) | |
| conv3_3 = self.model3(conv2_2[:,:,::2,::2]) | |
| conv4_3 = self.model4(conv3_3[:,:,::2,::2]) | |
| conv5_3 = self.model5(conv4_3) | |
| conv6_3 = self.model6(conv5_3) | |
| conv7_3 = self.model7(conv6_3) | |
| conv8_up = self.model8up(conv7_3) + self.model3short8(conv3_3) | |
| conv8_3 = self.model8(conv8_up) | |
| conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2) | |
| conv9_3 = self.model9(conv9_up) | |
| conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2) | |
| conv10_2 = self.model10(conv10_up) | |
| out_reg = self.model_out(conv10_2) | |
| conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2) | |
| conv9_3 = self.model9(conv9_up) | |
| conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2) | |
| conv10_2 = self.model10(conv10_up) | |
| out_reg = self.model_out(conv10_2) | |
| return self.unnormalize_ab(out_reg) | |
| def siggraph17(pretrained=True): | |
| model = SIGGRAPHGenerator() | |
| if(pretrained): | |
| import torch.utils.model_zoo as model_zoo | |
| model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/siggraph17-df00044c.pth',map_location='cpu',check_hash=True)) | |
| return model | |