Spaces:
Sleeping
Sleeping
| # This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
| # ## Citations | |
| # ```bibtex | |
| # @inproceedings{yao2021wenet, | |
| # title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
| # author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
| # booktitle={Proc. Interspeech}, | |
| # year={2021}, | |
| # address={Brno, Czech Republic }, | |
| # organization={IEEE} | |
| # } | |
| # @article{zhang2022wenet, | |
| # title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
| # author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
| # journal={arXiv preprint arXiv:2203.15455}, | |
| # year={2022} | |
| # } | |
| # | |
| """Encoder definition.""" | |
| from typing import Tuple, Optional, List, Union | |
| import torch | |
| import logging | |
| import torch.nn.functional as F | |
| from modules.wenet_extractor.transformer.positionwise_feed_forward import ( | |
| PositionwiseFeedForward, | |
| ) | |
| from modules.wenet_extractor.transformer.embedding import PositionalEncoding | |
| from modules.wenet_extractor.transformer.embedding import RelPositionalEncoding | |
| from modules.wenet_extractor.transformer.embedding import NoPositionalEncoding | |
| from modules.wenet_extractor.transformer.subsampling import Conv2dSubsampling4 | |
| from modules.wenet_extractor.transformer.subsampling import Conv2dSubsampling6 | |
| from modules.wenet_extractor.transformer.subsampling import Conv2dSubsampling8 | |
| from modules.wenet_extractor.transformer.subsampling import LinearNoSubsampling | |
| from modules.wenet_extractor.transformer.attention import MultiHeadedAttention | |
| from modules.wenet_extractor.transformer.attention import ( | |
| RelPositionMultiHeadedAttention, | |
| ) | |
| from modules.wenet_extractor.transformer.encoder_layer import ConformerEncoderLayer | |
| from modules.wenet_extractor.efficient_conformer.subsampling import Conv2dSubsampling2 | |
| from modules.wenet_extractor.efficient_conformer.convolution import ConvolutionModule | |
| from modules.wenet_extractor.efficient_conformer.attention import ( | |
| GroupedRelPositionMultiHeadedAttention, | |
| ) | |
| from modules.wenet_extractor.efficient_conformer.encoder_layer import ( | |
| StrideConformerEncoderLayer, | |
| ) | |
| from modules.wenet_extractor.utils.common import get_activation | |
| from modules.wenet_extractor.utils.mask import make_pad_mask | |
| from modules.wenet_extractor.utils.mask import add_optional_chunk_mask | |
| class EfficientConformerEncoder(torch.nn.Module): | |
| """Conformer encoder module.""" | |
| def __init__( | |
| self, | |
| input_size: int, | |
| output_size: int = 256, | |
| attention_heads: int = 4, | |
| linear_units: int = 2048, | |
| num_blocks: int = 6, | |
| dropout_rate: float = 0.1, | |
| positional_dropout_rate: float = 0.1, | |
| attention_dropout_rate: float = 0.0, | |
| input_layer: str = "conv2d", | |
| pos_enc_layer_type: str = "rel_pos", | |
| normalize_before: bool = True, | |
| static_chunk_size: int = 0, | |
| use_dynamic_chunk: bool = False, | |
| global_cmvn: torch.nn.Module = None, | |
| use_dynamic_left_chunk: bool = False, | |
| macaron_style: bool = True, | |
| activation_type: str = "swish", | |
| use_cnn_module: bool = True, | |
| cnn_module_kernel: int = 15, | |
| causal: bool = False, | |
| cnn_module_norm: str = "batch_norm", | |
| stride_layer_idx: Optional[Union[int, List[int]]] = 3, | |
| stride: Optional[Union[int, List[int]]] = 2, | |
| group_layer_idx: Optional[Union[int, List[int], tuple]] = (0, 1, 2, 3), | |
| group_size: int = 3, | |
| stride_kernel: bool = True, | |
| **kwargs, | |
| ): | |
| """Construct Efficient Conformer Encoder | |
| Args: | |
| input_size to use_dynamic_chunk, see in BaseEncoder | |
| macaron_style (bool): Whether to use macaron style for | |
| positionwise layer. | |
| activation_type (str): Encoder activation function type. | |
| use_cnn_module (bool): Whether to use convolution module. | |
| cnn_module_kernel (int): Kernel size of convolution module. | |
| causal (bool): whether to use causal convolution or not. | |
| stride_layer_idx (list): layer id with StrideConv, start from 0 | |
| stride (list): stride size of each StrideConv in efficient conformer | |
| group_layer_idx (list): layer id with GroupedAttention, start from 0 | |
| group_size (int): group size of every GroupedAttention layer | |
| stride_kernel (bool): default True. True: recompute cnn kernels with stride. | |
| """ | |
| super().__init__() | |
| self._output_size = output_size | |
| if pos_enc_layer_type == "abs_pos": | |
| pos_enc_class = PositionalEncoding | |
| elif pos_enc_layer_type == "rel_pos": | |
| pos_enc_class = RelPositionalEncoding | |
| elif pos_enc_layer_type == "no_pos": | |
| pos_enc_class = NoPositionalEncoding | |
| else: | |
| raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type) | |
| if input_layer == "linear": | |
| subsampling_class = LinearNoSubsampling | |
| elif input_layer == "conv2d2": | |
| subsampling_class = Conv2dSubsampling2 | |
| elif input_layer == "conv2d": | |
| subsampling_class = Conv2dSubsampling4 | |
| elif input_layer == "conv2d6": | |
| subsampling_class = Conv2dSubsampling6 | |
| elif input_layer == "conv2d8": | |
| subsampling_class = Conv2dSubsampling8 | |
| else: | |
| raise ValueError("unknown input_layer: " + input_layer) | |
| logging.info( | |
| f"input_layer = {input_layer}, " f"subsampling_class = {subsampling_class}" | |
| ) | |
| self.global_cmvn = global_cmvn | |
| self.embed = subsampling_class( | |
| input_size, | |
| output_size, | |
| dropout_rate, | |
| pos_enc_class(output_size, positional_dropout_rate), | |
| ) | |
| self.input_layer = input_layer | |
| self.normalize_before = normalize_before | |
| self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) | |
| self.static_chunk_size = static_chunk_size | |
| self.use_dynamic_chunk = use_dynamic_chunk | |
| self.use_dynamic_left_chunk = use_dynamic_left_chunk | |
| activation = get_activation(activation_type) | |
| self.num_blocks = num_blocks | |
| self.attention_heads = attention_heads | |
| self.cnn_module_kernel = cnn_module_kernel | |
| self.global_chunk_size = 0 | |
| self.chunk_feature_map = 0 | |
| # efficient conformer configs | |
| self.stride_layer_idx = ( | |
| [stride_layer_idx] if type(stride_layer_idx) == int else stride_layer_idx | |
| ) | |
| self.stride = [stride] if type(stride) == int else stride | |
| self.group_layer_idx = ( | |
| [group_layer_idx] if type(group_layer_idx) == int else group_layer_idx | |
| ) | |
| self.grouped_size = group_size # group size of every GroupedAttention layer | |
| assert len(self.stride) == len(self.stride_layer_idx) | |
| self.cnn_module_kernels = [cnn_module_kernel] # kernel size of each StridedConv | |
| for i in self.stride: | |
| if stride_kernel: | |
| self.cnn_module_kernels.append(self.cnn_module_kernels[-1] // i) | |
| else: | |
| self.cnn_module_kernels.append(self.cnn_module_kernels[-1]) | |
| logging.info( | |
| f"stride_layer_idx= {self.stride_layer_idx}, " | |
| f"stride = {self.stride}, " | |
| f"cnn_module_kernel = {self.cnn_module_kernels}, " | |
| f"group_layer_idx = {self.group_layer_idx}, " | |
| f"grouped_size = {self.grouped_size}" | |
| ) | |
| # feed-forward module definition | |
| positionwise_layer = PositionwiseFeedForward | |
| positionwise_layer_args = ( | |
| output_size, | |
| linear_units, | |
| dropout_rate, | |
| activation, | |
| ) | |
| # convolution module definition | |
| convolution_layer = ConvolutionModule | |
| # encoder definition | |
| index = 0 | |
| layers = [] | |
| for i in range(num_blocks): | |
| # self-attention module definition | |
| if i in self.group_layer_idx: | |
| encoder_selfattn_layer = GroupedRelPositionMultiHeadedAttention | |
| encoder_selfattn_layer_args = ( | |
| attention_heads, | |
| output_size, | |
| attention_dropout_rate, | |
| self.grouped_size, | |
| ) | |
| else: | |
| if pos_enc_layer_type == "no_pos": | |
| encoder_selfattn_layer = MultiHeadedAttention | |
| else: | |
| encoder_selfattn_layer = RelPositionMultiHeadedAttention | |
| encoder_selfattn_layer_args = ( | |
| attention_heads, | |
| output_size, | |
| attention_dropout_rate, | |
| ) | |
| # conformer module definition | |
| if i in self.stride_layer_idx: | |
| # conformer block with downsampling | |
| convolution_layer_args_stride = ( | |
| output_size, | |
| self.cnn_module_kernels[index], | |
| activation, | |
| cnn_module_norm, | |
| causal, | |
| True, | |
| self.stride[index], | |
| ) | |
| layers.append( | |
| StrideConformerEncoderLayer( | |
| output_size, | |
| encoder_selfattn_layer(*encoder_selfattn_layer_args), | |
| positionwise_layer(*positionwise_layer_args), | |
| positionwise_layer(*positionwise_layer_args) | |
| if macaron_style | |
| else None, | |
| convolution_layer(*convolution_layer_args_stride) | |
| if use_cnn_module | |
| else None, | |
| torch.nn.AvgPool1d( | |
| kernel_size=self.stride[index], | |
| stride=self.stride[index], | |
| padding=0, | |
| ceil_mode=True, | |
| count_include_pad=False, | |
| ), # pointwise_conv_layer | |
| dropout_rate, | |
| normalize_before, | |
| ) | |
| ) | |
| index = index + 1 | |
| else: | |
| # conformer block | |
| convolution_layer_args_normal = ( | |
| output_size, | |
| self.cnn_module_kernels[index], | |
| activation, | |
| cnn_module_norm, | |
| causal, | |
| ) | |
| layers.append( | |
| ConformerEncoderLayer( | |
| output_size, | |
| encoder_selfattn_layer(*encoder_selfattn_layer_args), | |
| positionwise_layer(*positionwise_layer_args), | |
| positionwise_layer(*positionwise_layer_args) | |
| if macaron_style | |
| else None, | |
| convolution_layer(*convolution_layer_args_normal) | |
| if use_cnn_module | |
| else None, | |
| dropout_rate, | |
| normalize_before, | |
| ) | |
| ) | |
| self.encoders = torch.nn.ModuleList(layers) | |
| def set_global_chunk_size(self, chunk_size): | |
| """Used in ONNX export.""" | |
| logging.info(f"set global chunk size: {chunk_size}, default is 0.") | |
| self.global_chunk_size = chunk_size | |
| if self.embed.subsampling_rate == 2: | |
| self.chunk_feature_map = 2 * self.global_chunk_size + 1 | |
| elif self.embed.subsampling_rate == 6: | |
| self.chunk_feature_map = 6 * self.global_chunk_size + 5 | |
| elif self.embed.subsampling_rate == 8: | |
| self.chunk_feature_map = 8 * self.global_chunk_size + 7 | |
| else: | |
| self.chunk_feature_map = 4 * self.global_chunk_size + 3 | |
| def output_size(self) -> int: | |
| return self._output_size | |
| def calculate_downsampling_factor(self, i: int) -> int: | |
| factor = 1 | |
| for idx, stride_idx in enumerate(self.stride_layer_idx): | |
| if i > stride_idx: | |
| factor *= self.stride[idx] | |
| return factor | |
| def forward( | |
| self, | |
| xs: torch.Tensor, | |
| xs_lens: torch.Tensor, | |
| decoding_chunk_size: int = 0, | |
| num_decoding_left_chunks: int = -1, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Embed positions in tensor. | |
| Args: | |
| xs: padded input tensor (B, T, D) | |
| xs_lens: input length (B) | |
| decoding_chunk_size: decoding chunk size for dynamic chunk | |
| 0: default for training, use random dynamic chunk. | |
| <0: for decoding, use full chunk. | |
| >0: for decoding, use fixed chunk size as set. | |
| num_decoding_left_chunks: number of left chunks, this is for decoding, | |
| the chunk size is decoding_chunk_size. | |
| >=0: use num_decoding_left_chunks | |
| <0: use all left chunks | |
| Returns: | |
| encoder output tensor xs, and subsampled masks | |
| xs: padded output tensor (B, T' ~= T/subsample_rate, D) | |
| masks: torch.Tensor batch padding mask after subsample | |
| (B, 1, T' ~= T/subsample_rate) | |
| """ | |
| T = xs.size(1) | |
| masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) | |
| if self.global_cmvn is not None: | |
| xs = self.global_cmvn(xs) | |
| xs, pos_emb, masks = self.embed(xs, masks) | |
| mask_pad = masks # (B, 1, T/subsample_rate) | |
| chunk_masks = add_optional_chunk_mask( | |
| xs, | |
| masks, | |
| self.use_dynamic_chunk, | |
| self.use_dynamic_left_chunk, | |
| decoding_chunk_size, | |
| self.static_chunk_size, | |
| num_decoding_left_chunks, | |
| ) | |
| index = 0 # traverse stride | |
| for i, layer in enumerate(self.encoders): | |
| # layer return : x, mask, new_att_cache, new_cnn_cache | |
| xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) | |
| if i in self.stride_layer_idx: | |
| masks = masks[:, :, :: self.stride[index]] | |
| chunk_masks = chunk_masks[ | |
| :, :: self.stride[index], :: self.stride[index] | |
| ] | |
| mask_pad = masks | |
| pos_emb = pos_emb[:, :: self.stride[index], :] | |
| index = index + 1 | |
| if self.normalize_before: | |
| xs = self.after_norm(xs) | |
| # Here we assume the mask is not changed in encoder layers, so just | |
| # return the masks before encoder layers, and the masks will be used | |
| # for cross attention with decoder later | |
| return xs, masks | |
| def forward_chunk( | |
| self, | |
| xs: torch.Tensor, | |
| offset: int, | |
| required_cache_size: int, | |
| att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0), | |
| cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0), | |
| att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """Forward just one chunk | |
| Args: | |
| xs (torch.Tensor): chunk input | |
| offset (int): current offset in encoder output time stamp | |
| required_cache_size (int): cache size required for next chunk | |
| compuation | |
| >=0: actual cache size | |
| <0: means all history cache is required | |
| att_cache (torch.Tensor): cache tensor for KEY & VALUE in | |
| transformer/conformer attention, with shape | |
| (elayers, head, cache_t1, d_k * 2), where | |
| `head * d_k == hidden-dim` and | |
| `cache_t1 == chunk_size * num_decoding_left_chunks`. | |
| cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer, | |
| (elayers, b=1, hidden-dim, cache_t2), where | |
| `cache_t2 == cnn.lorder - 1` | |
| att_mask : mask matrix of self attention | |
| Returns: | |
| torch.Tensor: output of current input xs | |
| torch.Tensor: subsampling cache required for next chunk computation | |
| List[torch.Tensor]: encoder layers output cache required for next | |
| chunk computation | |
| List[torch.Tensor]: conformer cnn cache | |
| """ | |
| assert xs.size(0) == 1 | |
| # using downsampling factor to recover offset | |
| offset *= self.calculate_downsampling_factor(self.num_blocks + 1) | |
| chunk_masks = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool) | |
| chunk_masks = chunk_masks.unsqueeze(1) # (1, 1, xs-time) | |
| real_len = 0 | |
| if self.global_chunk_size > 0: | |
| # for ONNX decode simulation, padding xs to chunk_size | |
| real_len = xs.size(1) | |
| pad_len = self.chunk_feature_map - real_len | |
| xs = F.pad(xs, (0, 0, 0, pad_len), value=0.0) | |
| chunk_masks = F.pad(chunk_masks, (0, pad_len), value=0.0) | |
| if self.global_cmvn is not None: | |
| xs = self.global_cmvn(xs) | |
| # NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim) | |
| xs, pos_emb, chunk_masks = self.embed(xs, chunk_masks, offset) | |
| elayers, cache_t1 = att_cache.size(0), att_cache.size(2) | |
| chunk_size = xs.size(1) | |
| attention_key_size = cache_t1 + chunk_size | |
| # NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim) | |
| # shape(pos_emb) = (b=1, chunk_size, emb_size=output_size=hidden-dim) | |
| if required_cache_size < 0: | |
| next_cache_start = 0 | |
| elif required_cache_size == 0: | |
| next_cache_start = attention_key_size | |
| else: | |
| next_cache_start = max(attention_key_size - required_cache_size, 0) | |
| r_att_cache = [] | |
| r_cnn_cache = [] | |
| mask_pad = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool) | |
| mask_pad = mask_pad.unsqueeze(1) # batchPad (b=1, 1, time=chunk_size) | |
| if self.global_chunk_size > 0: | |
| # for ONNX decode simulation | |
| pos_emb = self.embed.position_encoding( | |
| offset=max(offset - cache_t1, 0), size=cache_t1 + self.global_chunk_size | |
| ) | |
| att_mask[:, :, -self.global_chunk_size :] = chunk_masks | |
| mask_pad = chunk_masks.to(torch.bool) | |
| else: | |
| pos_emb = self.embed.position_encoding( | |
| offset=offset - cache_t1, size=attention_key_size | |
| ) | |
| max_att_len, max_cnn_len = 0, 0 # for repeat_interleave of new_att_cache | |
| for i, layer in enumerate(self.encoders): | |
| factor = self.calculate_downsampling_factor(i) | |
| # NOTE(xcsong): Before layer.forward | |
| # shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2), | |
| # shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2) | |
| # shape(new_att_cache) = [ batch, head, time2, outdim//head * 2 ] | |
| att_cache_trunc = 0 | |
| if xs.size(1) + att_cache.size(2) / factor > pos_emb.size(1): | |
| # The time step is not divisible by the downsampling multiple | |
| att_cache_trunc = ( | |
| xs.size(1) + att_cache.size(2) // factor - pos_emb.size(1) + 1 | |
| ) | |
| xs, _, new_att_cache, new_cnn_cache = layer( | |
| xs, | |
| att_mask, | |
| pos_emb, | |
| mask_pad=mask_pad, | |
| att_cache=att_cache[i : i + 1, :, ::factor, :][ | |
| :, :, att_cache_trunc:, : | |
| ], | |
| cnn_cache=cnn_cache[i, :, :, :] if cnn_cache.size(0) > 0 else cnn_cache, | |
| ) | |
| if i in self.stride_layer_idx: | |
| # compute time dimension for next block | |
| efficient_index = self.stride_layer_idx.index(i) | |
| att_mask = att_mask[ | |
| :, :: self.stride[efficient_index], :: self.stride[efficient_index] | |
| ] | |
| mask_pad = mask_pad[ | |
| :, :: self.stride[efficient_index], :: self.stride[efficient_index] | |
| ] | |
| pos_emb = pos_emb[:, :: self.stride[efficient_index], :] | |
| # shape(new_att_cache) = [batch, head, time2, outdim] | |
| new_att_cache = new_att_cache[:, :, next_cache_start // factor :, :] | |
| # shape(new_cnn_cache) = [1, batch, outdim, cache_t2] | |
| new_cnn_cache = new_cnn_cache.unsqueeze(0) | |
| # use repeat_interleave to new_att_cache | |
| new_att_cache = new_att_cache.repeat_interleave(repeats=factor, dim=2) | |
| # padding new_cnn_cache to cnn.lorder for casual convolution | |
| new_cnn_cache = F.pad( | |
| new_cnn_cache, (self.cnn_module_kernel - 1 - new_cnn_cache.size(3), 0) | |
| ) | |
| if i == 0: | |
| # record length for the first block as max length | |
| max_att_len = new_att_cache.size(2) | |
| max_cnn_len = new_cnn_cache.size(3) | |
| # update real shape of att_cache and cnn_cache | |
| r_att_cache.append(new_att_cache[:, :, -max_att_len:, :]) | |
| r_cnn_cache.append(new_cnn_cache[:, :, :, -max_cnn_len:]) | |
| if self.normalize_before: | |
| xs = self.after_norm(xs) | |
| # NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2), | |
| # ? may be larger than cache_t1, it depends on required_cache_size | |
| r_att_cache = torch.cat(r_att_cache, dim=0) | |
| # NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2) | |
| r_cnn_cache = torch.cat(r_cnn_cache, dim=0) | |
| if self.global_chunk_size > 0 and real_len: | |
| chunk_real_len = ( | |
| real_len | |
| // self.embed.subsampling_rate | |
| // self.calculate_downsampling_factor(self.num_blocks + 1) | |
| ) | |
| # Keeping 1 more timestep can mitigate information leakage | |
| # from the encoder caused by the padding | |
| xs = xs[:, : chunk_real_len + 1, :] | |
| return xs, r_att_cache, r_cnn_cache | |
| def forward_chunk_by_chunk( | |
| self, | |
| xs: torch.Tensor, | |
| decoding_chunk_size: int, | |
| num_decoding_left_chunks: int = -1, | |
| use_onnx=False, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Forward input chunk by chunk with chunk_size like a streaming | |
| fashion | |
| Here we should pay special attention to computation cache in the | |
| streaming style forward chunk by chunk. Three things should be taken | |
| into account for computation in the current network: | |
| 1. transformer/conformer encoder layers output cache | |
| 2. convolution in conformer | |
| 3. convolution in subsampling | |
| However, we don't implement subsampling cache for: | |
| 1. We can control subsampling module to output the right result by | |
| overlapping input instead of cache left context, even though it | |
| wastes some computation, but subsampling only takes a very | |
| small fraction of computation in the whole model. | |
| 2. Typically, there are several covolution layers with subsampling | |
| in subsampling module, it is tricky and complicated to do cache | |
| with different convolution layers with different subsampling | |
| rate. | |
| 3. Currently, nn.Sequential is used to stack all the convolution | |
| layers in subsampling, we need to rewrite it to make it work | |
| with cache, which is not prefered. | |
| Args: | |
| xs (torch.Tensor): (1, max_len, dim) | |
| decoding_chunk_size (int): decoding chunk size | |
| num_decoding_left_chunks (int): | |
| use_onnx (bool): True for simulating ONNX model inference. | |
| """ | |
| assert decoding_chunk_size > 0 | |
| # The model is trained by static or dynamic chunk | |
| assert self.static_chunk_size > 0 or self.use_dynamic_chunk | |
| subsampling = self.embed.subsampling_rate | |
| context = self.embed.right_context + 1 # Add current frame | |
| stride = subsampling * decoding_chunk_size | |
| decoding_window = (decoding_chunk_size - 1) * subsampling + context | |
| num_frames = xs.size(1) | |
| outputs = [] | |
| offset = 0 | |
| required_cache_size = decoding_chunk_size * num_decoding_left_chunks | |
| if use_onnx: | |
| logging.info("Simulating for ONNX runtime ...") | |
| att_cache: torch.Tensor = torch.zeros( | |
| ( | |
| self.num_blocks, | |
| self.attention_heads, | |
| required_cache_size, | |
| self.output_size() // self.attention_heads * 2, | |
| ), | |
| device=xs.device, | |
| ) | |
| cnn_cache: torch.Tensor = torch.zeros( | |
| (self.num_blocks, 1, self.output_size(), self.cnn_module_kernel - 1), | |
| device=xs.device, | |
| ) | |
| self.set_global_chunk_size(chunk_size=decoding_chunk_size) | |
| else: | |
| logging.info("Simulating for JIT runtime ...") | |
| att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device) | |
| cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device) | |
| # Feed forward overlap input step by step | |
| for cur in range(0, num_frames - context + 1, stride): | |
| end = min(cur + decoding_window, num_frames) | |
| logging.info( | |
| f"-->> frame chunk msg: cur={cur}, " | |
| f"end={end}, num_frames={end-cur}, " | |
| f"decoding_window={decoding_window}" | |
| ) | |
| if use_onnx: | |
| att_mask: torch.Tensor = torch.ones( | |
| (1, 1, required_cache_size + decoding_chunk_size), | |
| dtype=torch.bool, | |
| device=xs.device, | |
| ) | |
| if cur == 0: | |
| att_mask[:, :, :required_cache_size] = 0 | |
| else: | |
| att_mask: torch.Tensor = torch.ones( | |
| (0, 0, 0), dtype=torch.bool, device=xs.device | |
| ) | |
| chunk_xs = xs[:, cur:end, :] | |
| (y, att_cache, cnn_cache) = self.forward_chunk( | |
| chunk_xs, offset, required_cache_size, att_cache, cnn_cache, att_mask | |
| ) | |
| outputs.append(y) | |
| offset += y.size(1) | |
| ys = torch.cat(outputs, 1) | |
| masks = torch.ones(1, 1, ys.size(1), device=ys.device, dtype=torch.bool) | |
| return ys, masks | |