Spaces:
No application file
No application file
| import torch | |
| from gfpgan.archs.stylegan2_clean_arch import StyleGAN2GeneratorClean | |
| def test_stylegan2generatorclean(): | |
| """Test arch: StyleGAN2GeneratorClean.""" | |
| # model init and forward (gpu) | |
| if torch.cuda.is_available(): | |
| net = StyleGAN2GeneratorClean( | |
| out_size=32, num_style_feat=512, num_mlp=8, channel_multiplier=1, narrow=0.5).cuda().eval() | |
| style = torch.rand((1, 512), dtype=torch.float32).cuda() | |
| output = net([style], input_is_latent=False) | |
| assert output[0].shape == (1, 3, 32, 32) | |
| assert output[1] is None | |
| # -------------------- with return_latents ----------------------- # | |
| output = net([style], input_is_latent=True, return_latents=True) | |
| assert output[0].shape == (1, 3, 32, 32) | |
| assert len(output[1]) == 1 | |
| # check latent | |
| assert output[1][0].shape == (8, 512) | |
| # -------------------- with randomize_noise = False ----------------------- # | |
| output = net([style], randomize_noise=False) | |
| assert output[0].shape == (1, 3, 32, 32) | |
| assert output[1] is None | |
| # -------------------- with truncation = 0.5 and mixing----------------------- # | |
| output = net([style, style], truncation=0.5, truncation_latent=style) | |
| assert output[0].shape == (1, 3, 32, 32) | |
| assert output[1] is None | |
| # ------------------ test make_noise ----------------------- # | |
| out = net.make_noise() | |
| assert len(out) == 7 | |
| assert out[0].shape == (1, 1, 4, 4) | |
| assert out[1].shape == (1, 1, 8, 8) | |
| assert out[2].shape == (1, 1, 8, 8) | |
| assert out[3].shape == (1, 1, 16, 16) | |
| assert out[4].shape == (1, 1, 16, 16) | |
| assert out[5].shape == (1, 1, 32, 32) | |
| assert out[6].shape == (1, 1, 32, 32) | |
| # ------------------ test get_latent ----------------------- # | |
| out = net.get_latent(style) | |
| assert out.shape == (1, 512) | |
| # ------------------ test mean_latent ----------------------- # | |
| out = net.mean_latent(2) | |
| assert out.shape == (1, 512) | |