Spaces:
No application file
No application file
culture
commited on
Commit
·
21f86f2
1
Parent(s):
f07d04e
Upload gfpgan/archs/arcface_arch.py
Browse files- gfpgan/archs/arcface_arch.py +245 -0
gfpgan/archs/arcface_arch.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def conv3x3(inplanes, outplanes, stride=1):
|
| 6 |
+
"""A simple wrapper for 3x3 convolution with padding.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
inplanes (int): Channel number of inputs.
|
| 10 |
+
outplanes (int): Channel number of outputs.
|
| 11 |
+
stride (int): Stride in convolution. Default: 1.
|
| 12 |
+
"""
|
| 13 |
+
return nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class BasicBlock(nn.Module):
|
| 17 |
+
"""Basic residual block used in the ResNetArcFace architecture.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
inplanes (int): Channel number of inputs.
|
| 21 |
+
planes (int): Channel number of outputs.
|
| 22 |
+
stride (int): Stride in convolution. Default: 1.
|
| 23 |
+
downsample (nn.Module): The downsample module. Default: None.
|
| 24 |
+
"""
|
| 25 |
+
expansion = 1 # output channel expansion ratio
|
| 26 |
+
|
| 27 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 28 |
+
super(BasicBlock, self).__init__()
|
| 29 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
| 30 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 31 |
+
self.relu = nn.ReLU(inplace=True)
|
| 32 |
+
self.conv2 = conv3x3(planes, planes)
|
| 33 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 34 |
+
self.downsample = downsample
|
| 35 |
+
self.stride = stride
|
| 36 |
+
|
| 37 |
+
def forward(self, x):
|
| 38 |
+
residual = x
|
| 39 |
+
|
| 40 |
+
out = self.conv1(x)
|
| 41 |
+
out = self.bn1(out)
|
| 42 |
+
out = self.relu(out)
|
| 43 |
+
|
| 44 |
+
out = self.conv2(out)
|
| 45 |
+
out = self.bn2(out)
|
| 46 |
+
|
| 47 |
+
if self.downsample is not None:
|
| 48 |
+
residual = self.downsample(x)
|
| 49 |
+
|
| 50 |
+
out += residual
|
| 51 |
+
out = self.relu(out)
|
| 52 |
+
|
| 53 |
+
return out
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class IRBlock(nn.Module):
|
| 57 |
+
"""Improved residual block (IR Block) used in the ResNetArcFace architecture.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
inplanes (int): Channel number of inputs.
|
| 61 |
+
planes (int): Channel number of outputs.
|
| 62 |
+
stride (int): Stride in convolution. Default: 1.
|
| 63 |
+
downsample (nn.Module): The downsample module. Default: None.
|
| 64 |
+
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
|
| 65 |
+
"""
|
| 66 |
+
expansion = 1 # output channel expansion ratio
|
| 67 |
+
|
| 68 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
|
| 69 |
+
super(IRBlock, self).__init__()
|
| 70 |
+
self.bn0 = nn.BatchNorm2d(inplanes)
|
| 71 |
+
self.conv1 = conv3x3(inplanes, inplanes)
|
| 72 |
+
self.bn1 = nn.BatchNorm2d(inplanes)
|
| 73 |
+
self.prelu = nn.PReLU()
|
| 74 |
+
self.conv2 = conv3x3(inplanes, planes, stride)
|
| 75 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 76 |
+
self.downsample = downsample
|
| 77 |
+
self.stride = stride
|
| 78 |
+
self.use_se = use_se
|
| 79 |
+
if self.use_se:
|
| 80 |
+
self.se = SEBlock(planes)
|
| 81 |
+
|
| 82 |
+
def forward(self, x):
|
| 83 |
+
residual = x
|
| 84 |
+
out = self.bn0(x)
|
| 85 |
+
out = self.conv1(out)
|
| 86 |
+
out = self.bn1(out)
|
| 87 |
+
out = self.prelu(out)
|
| 88 |
+
|
| 89 |
+
out = self.conv2(out)
|
| 90 |
+
out = self.bn2(out)
|
| 91 |
+
if self.use_se:
|
| 92 |
+
out = self.se(out)
|
| 93 |
+
|
| 94 |
+
if self.downsample is not None:
|
| 95 |
+
residual = self.downsample(x)
|
| 96 |
+
|
| 97 |
+
out += residual
|
| 98 |
+
out = self.prelu(out)
|
| 99 |
+
|
| 100 |
+
return out
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class Bottleneck(nn.Module):
|
| 104 |
+
"""Bottleneck block used in the ResNetArcFace architecture.
|
| 105 |
+
|
| 106 |
+
Args:
|
| 107 |
+
inplanes (int): Channel number of inputs.
|
| 108 |
+
planes (int): Channel number of outputs.
|
| 109 |
+
stride (int): Stride in convolution. Default: 1.
|
| 110 |
+
downsample (nn.Module): The downsample module. Default: None.
|
| 111 |
+
"""
|
| 112 |
+
expansion = 4 # output channel expansion ratio
|
| 113 |
+
|
| 114 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 115 |
+
super(Bottleneck, self).__init__()
|
| 116 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
| 117 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 118 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
| 119 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 120 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
| 121 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
| 122 |
+
self.relu = nn.ReLU(inplace=True)
|
| 123 |
+
self.downsample = downsample
|
| 124 |
+
self.stride = stride
|
| 125 |
+
|
| 126 |
+
def forward(self, x):
|
| 127 |
+
residual = x
|
| 128 |
+
|
| 129 |
+
out = self.conv1(x)
|
| 130 |
+
out = self.bn1(out)
|
| 131 |
+
out = self.relu(out)
|
| 132 |
+
|
| 133 |
+
out = self.conv2(out)
|
| 134 |
+
out = self.bn2(out)
|
| 135 |
+
out = self.relu(out)
|
| 136 |
+
|
| 137 |
+
out = self.conv3(out)
|
| 138 |
+
out = self.bn3(out)
|
| 139 |
+
|
| 140 |
+
if self.downsample is not None:
|
| 141 |
+
residual = self.downsample(x)
|
| 142 |
+
|
| 143 |
+
out += residual
|
| 144 |
+
out = self.relu(out)
|
| 145 |
+
|
| 146 |
+
return out
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
class SEBlock(nn.Module):
|
| 150 |
+
"""The squeeze-and-excitation block (SEBlock) used in the IRBlock.
|
| 151 |
+
|
| 152 |
+
Args:
|
| 153 |
+
channel (int): Channel number of inputs.
|
| 154 |
+
reduction (int): Channel reduction ration. Default: 16.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(self, channel, reduction=16):
|
| 158 |
+
super(SEBlock, self).__init__()
|
| 159 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1) # pool to 1x1 without spatial information
|
| 160 |
+
self.fc = nn.Sequential(
|
| 161 |
+
nn.Linear(channel, channel // reduction), nn.PReLU(), nn.Linear(channel // reduction, channel),
|
| 162 |
+
nn.Sigmoid())
|
| 163 |
+
|
| 164 |
+
def forward(self, x):
|
| 165 |
+
b, c, _, _ = x.size()
|
| 166 |
+
y = self.avg_pool(x).view(b, c)
|
| 167 |
+
y = self.fc(y).view(b, c, 1, 1)
|
| 168 |
+
return x * y
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
@ARCH_REGISTRY.register()
|
| 172 |
+
class ResNetArcFace(nn.Module):
|
| 173 |
+
"""ArcFace with ResNet architectures.
|
| 174 |
+
|
| 175 |
+
Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
|
| 176 |
+
|
| 177 |
+
Args:
|
| 178 |
+
block (str): Block used in the ArcFace architecture.
|
| 179 |
+
layers (tuple(int)): Block numbers in each layer.
|
| 180 |
+
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
|
| 181 |
+
"""
|
| 182 |
+
|
| 183 |
+
def __init__(self, block, layers, use_se=True):
|
| 184 |
+
if block == 'IRBlock':
|
| 185 |
+
block = IRBlock
|
| 186 |
+
self.inplanes = 64
|
| 187 |
+
self.use_se = use_se
|
| 188 |
+
super(ResNetArcFace, self).__init__()
|
| 189 |
+
|
| 190 |
+
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False)
|
| 191 |
+
self.bn1 = nn.BatchNorm2d(64)
|
| 192 |
+
self.prelu = nn.PReLU()
|
| 193 |
+
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
|
| 194 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
| 195 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
| 196 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
| 197 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
| 198 |
+
self.bn4 = nn.BatchNorm2d(512)
|
| 199 |
+
self.dropout = nn.Dropout()
|
| 200 |
+
self.fc5 = nn.Linear(512 * 8 * 8, 512)
|
| 201 |
+
self.bn5 = nn.BatchNorm1d(512)
|
| 202 |
+
|
| 203 |
+
# initialization
|
| 204 |
+
for m in self.modules():
|
| 205 |
+
if isinstance(m, nn.Conv2d):
|
| 206 |
+
nn.init.xavier_normal_(m.weight)
|
| 207 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
| 208 |
+
nn.init.constant_(m.weight, 1)
|
| 209 |
+
nn.init.constant_(m.bias, 0)
|
| 210 |
+
elif isinstance(m, nn.Linear):
|
| 211 |
+
nn.init.xavier_normal_(m.weight)
|
| 212 |
+
nn.init.constant_(m.bias, 0)
|
| 213 |
+
|
| 214 |
+
def _make_layer(self, block, planes, num_blocks, stride=1):
|
| 215 |
+
downsample = None
|
| 216 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 217 |
+
downsample = nn.Sequential(
|
| 218 |
+
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
|
| 219 |
+
nn.BatchNorm2d(planes * block.expansion),
|
| 220 |
+
)
|
| 221 |
+
layers = []
|
| 222 |
+
layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
|
| 223 |
+
self.inplanes = planes
|
| 224 |
+
for _ in range(1, num_blocks):
|
| 225 |
+
layers.append(block(self.inplanes, planes, use_se=self.use_se))
|
| 226 |
+
|
| 227 |
+
return nn.Sequential(*layers)
|
| 228 |
+
|
| 229 |
+
def forward(self, x):
|
| 230 |
+
x = self.conv1(x)
|
| 231 |
+
x = self.bn1(x)
|
| 232 |
+
x = self.prelu(x)
|
| 233 |
+
x = self.maxpool(x)
|
| 234 |
+
|
| 235 |
+
x = self.layer1(x)
|
| 236 |
+
x = self.layer2(x)
|
| 237 |
+
x = self.layer3(x)
|
| 238 |
+
x = self.layer4(x)
|
| 239 |
+
x = self.bn4(x)
|
| 240 |
+
x = self.dropout(x)
|
| 241 |
+
x = x.view(x.size(0), -1)
|
| 242 |
+
x = self.fc5(x)
|
| 243 |
+
x = self.bn5(x)
|
| 244 |
+
|
| 245 |
+
return x
|