Spaces:
No application file
No application file
culture
commited on
Commit
·
3df44eb
1
Parent(s):
21f86f2
Upload gfpgan/archs/gfpganv1_arch.py
Browse files- gfpgan/archs/gfpganv1_arch.py +439 -0
gfpgan/archs/gfpganv1_arch.py
ADDED
|
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import random
|
| 3 |
+
import torch
|
| 4 |
+
from basicsr.archs.stylegan2_arch import (ConvLayer, EqualConv2d, EqualLinear, ResBlock, ScaledLeakyReLU,
|
| 5 |
+
StyleGAN2Generator)
|
| 6 |
+
from basicsr.ops.fused_act import FusedLeakyReLU
|
| 7 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
| 8 |
+
from torch import nn
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class StyleGAN2GeneratorSFT(StyleGAN2Generator):
|
| 13 |
+
"""StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
out_size (int): The spatial size of outputs.
|
| 17 |
+
num_style_feat (int): Channel number of style features. Default: 512.
|
| 18 |
+
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
| 19 |
+
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
| 20 |
+
resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
|
| 21 |
+
applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
|
| 22 |
+
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
|
| 23 |
+
narrow (float): The narrow ratio for channels. Default: 1.
|
| 24 |
+
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
def __init__(self,
|
| 28 |
+
out_size,
|
| 29 |
+
num_style_feat=512,
|
| 30 |
+
num_mlp=8,
|
| 31 |
+
channel_multiplier=2,
|
| 32 |
+
resample_kernel=(1, 3, 3, 1),
|
| 33 |
+
lr_mlp=0.01,
|
| 34 |
+
narrow=1,
|
| 35 |
+
sft_half=False):
|
| 36 |
+
super(StyleGAN2GeneratorSFT, self).__init__(
|
| 37 |
+
out_size,
|
| 38 |
+
num_style_feat=num_style_feat,
|
| 39 |
+
num_mlp=num_mlp,
|
| 40 |
+
channel_multiplier=channel_multiplier,
|
| 41 |
+
resample_kernel=resample_kernel,
|
| 42 |
+
lr_mlp=lr_mlp,
|
| 43 |
+
narrow=narrow)
|
| 44 |
+
self.sft_half = sft_half
|
| 45 |
+
|
| 46 |
+
def forward(self,
|
| 47 |
+
styles,
|
| 48 |
+
conditions,
|
| 49 |
+
input_is_latent=False,
|
| 50 |
+
noise=None,
|
| 51 |
+
randomize_noise=True,
|
| 52 |
+
truncation=1,
|
| 53 |
+
truncation_latent=None,
|
| 54 |
+
inject_index=None,
|
| 55 |
+
return_latents=False):
|
| 56 |
+
"""Forward function for StyleGAN2GeneratorSFT.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
styles (list[Tensor]): Sample codes of styles.
|
| 60 |
+
conditions (list[Tensor]): SFT conditions to generators.
|
| 61 |
+
input_is_latent (bool): Whether input is latent style. Default: False.
|
| 62 |
+
noise (Tensor | None): Input noise or None. Default: None.
|
| 63 |
+
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
|
| 64 |
+
truncation (float): The truncation ratio. Default: 1.
|
| 65 |
+
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
|
| 66 |
+
inject_index (int | None): The injection index for mixing noise. Default: None.
|
| 67 |
+
return_latents (bool): Whether to return style latents. Default: False.
|
| 68 |
+
"""
|
| 69 |
+
# style codes -> latents with Style MLP layer
|
| 70 |
+
if not input_is_latent:
|
| 71 |
+
styles = [self.style_mlp(s) for s in styles]
|
| 72 |
+
# noises
|
| 73 |
+
if noise is None:
|
| 74 |
+
if randomize_noise:
|
| 75 |
+
noise = [None] * self.num_layers # for each style conv layer
|
| 76 |
+
else: # use the stored noise
|
| 77 |
+
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
|
| 78 |
+
# style truncation
|
| 79 |
+
if truncation < 1:
|
| 80 |
+
style_truncation = []
|
| 81 |
+
for style in styles:
|
| 82 |
+
style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
|
| 83 |
+
styles = style_truncation
|
| 84 |
+
# get style latents with injection
|
| 85 |
+
if len(styles) == 1:
|
| 86 |
+
inject_index = self.num_latent
|
| 87 |
+
|
| 88 |
+
if styles[0].ndim < 3:
|
| 89 |
+
# repeat latent code for all the layers
|
| 90 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
| 91 |
+
else: # used for encoder with different latent code for each layer
|
| 92 |
+
latent = styles[0]
|
| 93 |
+
elif len(styles) == 2: # mixing noises
|
| 94 |
+
if inject_index is None:
|
| 95 |
+
inject_index = random.randint(1, self.num_latent - 1)
|
| 96 |
+
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
| 97 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
|
| 98 |
+
latent = torch.cat([latent1, latent2], 1)
|
| 99 |
+
|
| 100 |
+
# main generation
|
| 101 |
+
out = self.constant_input(latent.shape[0])
|
| 102 |
+
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
|
| 103 |
+
skip = self.to_rgb1(out, latent[:, 1])
|
| 104 |
+
|
| 105 |
+
i = 1
|
| 106 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
|
| 107 |
+
noise[2::2], self.to_rgbs):
|
| 108 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
| 109 |
+
|
| 110 |
+
# the conditions may have fewer levels
|
| 111 |
+
if i < len(conditions):
|
| 112 |
+
# SFT part to combine the conditions
|
| 113 |
+
if self.sft_half: # only apply SFT to half of the channels
|
| 114 |
+
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
|
| 115 |
+
out_sft = out_sft * conditions[i - 1] + conditions[i]
|
| 116 |
+
out = torch.cat([out_same, out_sft], dim=1)
|
| 117 |
+
else: # apply SFT to all the channels
|
| 118 |
+
out = out * conditions[i - 1] + conditions[i]
|
| 119 |
+
|
| 120 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
| 121 |
+
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
|
| 122 |
+
i += 2
|
| 123 |
+
|
| 124 |
+
image = skip
|
| 125 |
+
|
| 126 |
+
if return_latents:
|
| 127 |
+
return image, latent
|
| 128 |
+
else:
|
| 129 |
+
return image, None
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class ConvUpLayer(nn.Module):
|
| 133 |
+
"""Convolutional upsampling layer. It uses bilinear upsampler + Conv.
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
in_channels (int): Channel number of the input.
|
| 137 |
+
out_channels (int): Channel number of the output.
|
| 138 |
+
kernel_size (int): Size of the convolving kernel.
|
| 139 |
+
stride (int): Stride of the convolution. Default: 1
|
| 140 |
+
padding (int): Zero-padding added to both sides of the input. Default: 0.
|
| 141 |
+
bias (bool): If ``True``, adds a learnable bias to the output. Default: ``True``.
|
| 142 |
+
bias_init_val (float): Bias initialized value. Default: 0.
|
| 143 |
+
activate (bool): Whether use activateion. Default: True.
|
| 144 |
+
"""
|
| 145 |
+
|
| 146 |
+
def __init__(self,
|
| 147 |
+
in_channels,
|
| 148 |
+
out_channels,
|
| 149 |
+
kernel_size,
|
| 150 |
+
stride=1,
|
| 151 |
+
padding=0,
|
| 152 |
+
bias=True,
|
| 153 |
+
bias_init_val=0,
|
| 154 |
+
activate=True):
|
| 155 |
+
super(ConvUpLayer, self).__init__()
|
| 156 |
+
self.in_channels = in_channels
|
| 157 |
+
self.out_channels = out_channels
|
| 158 |
+
self.kernel_size = kernel_size
|
| 159 |
+
self.stride = stride
|
| 160 |
+
self.padding = padding
|
| 161 |
+
# self.scale is used to scale the convolution weights, which is related to the common initializations.
|
| 162 |
+
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
|
| 163 |
+
|
| 164 |
+
self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
|
| 165 |
+
|
| 166 |
+
if bias and not activate:
|
| 167 |
+
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
|
| 168 |
+
else:
|
| 169 |
+
self.register_parameter('bias', None)
|
| 170 |
+
|
| 171 |
+
# activation
|
| 172 |
+
if activate:
|
| 173 |
+
if bias:
|
| 174 |
+
self.activation = FusedLeakyReLU(out_channels)
|
| 175 |
+
else:
|
| 176 |
+
self.activation = ScaledLeakyReLU(0.2)
|
| 177 |
+
else:
|
| 178 |
+
self.activation = None
|
| 179 |
+
|
| 180 |
+
def forward(self, x):
|
| 181 |
+
# bilinear upsample
|
| 182 |
+
out = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
|
| 183 |
+
# conv
|
| 184 |
+
out = F.conv2d(
|
| 185 |
+
out,
|
| 186 |
+
self.weight * self.scale,
|
| 187 |
+
bias=self.bias,
|
| 188 |
+
stride=self.stride,
|
| 189 |
+
padding=self.padding,
|
| 190 |
+
)
|
| 191 |
+
# activation
|
| 192 |
+
if self.activation is not None:
|
| 193 |
+
out = self.activation(out)
|
| 194 |
+
return out
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class ResUpBlock(nn.Module):
|
| 198 |
+
"""Residual block with upsampling.
|
| 199 |
+
|
| 200 |
+
Args:
|
| 201 |
+
in_channels (int): Channel number of the input.
|
| 202 |
+
out_channels (int): Channel number of the output.
|
| 203 |
+
"""
|
| 204 |
+
|
| 205 |
+
def __init__(self, in_channels, out_channels):
|
| 206 |
+
super(ResUpBlock, self).__init__()
|
| 207 |
+
|
| 208 |
+
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
|
| 209 |
+
self.conv2 = ConvUpLayer(in_channels, out_channels, 3, stride=1, padding=1, bias=True, activate=True)
|
| 210 |
+
self.skip = ConvUpLayer(in_channels, out_channels, 1, bias=False, activate=False)
|
| 211 |
+
|
| 212 |
+
def forward(self, x):
|
| 213 |
+
out = self.conv1(x)
|
| 214 |
+
out = self.conv2(out)
|
| 215 |
+
skip = self.skip(x)
|
| 216 |
+
out = (out + skip) / math.sqrt(2)
|
| 217 |
+
return out
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
@ARCH_REGISTRY.register()
|
| 221 |
+
class GFPGANv1(nn.Module):
|
| 222 |
+
"""The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
|
| 223 |
+
|
| 224 |
+
Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
|
| 225 |
+
|
| 226 |
+
Args:
|
| 227 |
+
out_size (int): The spatial size of outputs.
|
| 228 |
+
num_style_feat (int): Channel number of style features. Default: 512.
|
| 229 |
+
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
| 230 |
+
resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
|
| 231 |
+
applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
|
| 232 |
+
decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
|
| 233 |
+
fix_decoder (bool): Whether to fix the decoder. Default: True.
|
| 234 |
+
|
| 235 |
+
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
| 236 |
+
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
|
| 237 |
+
input_is_latent (bool): Whether input is latent style. Default: False.
|
| 238 |
+
different_w (bool): Whether to use different latent w for different layers. Default: False.
|
| 239 |
+
narrow (float): The narrow ratio for channels. Default: 1.
|
| 240 |
+
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
|
| 241 |
+
"""
|
| 242 |
+
|
| 243 |
+
def __init__(
|
| 244 |
+
self,
|
| 245 |
+
out_size,
|
| 246 |
+
num_style_feat=512,
|
| 247 |
+
channel_multiplier=1,
|
| 248 |
+
resample_kernel=(1, 3, 3, 1),
|
| 249 |
+
decoder_load_path=None,
|
| 250 |
+
fix_decoder=True,
|
| 251 |
+
# for stylegan decoder
|
| 252 |
+
num_mlp=8,
|
| 253 |
+
lr_mlp=0.01,
|
| 254 |
+
input_is_latent=False,
|
| 255 |
+
different_w=False,
|
| 256 |
+
narrow=1,
|
| 257 |
+
sft_half=False):
|
| 258 |
+
|
| 259 |
+
super(GFPGANv1, self).__init__()
|
| 260 |
+
self.input_is_latent = input_is_latent
|
| 261 |
+
self.different_w = different_w
|
| 262 |
+
self.num_style_feat = num_style_feat
|
| 263 |
+
|
| 264 |
+
unet_narrow = narrow * 0.5 # by default, use a half of input channels
|
| 265 |
+
channels = {
|
| 266 |
+
'4': int(512 * unet_narrow),
|
| 267 |
+
'8': int(512 * unet_narrow),
|
| 268 |
+
'16': int(512 * unet_narrow),
|
| 269 |
+
'32': int(512 * unet_narrow),
|
| 270 |
+
'64': int(256 * channel_multiplier * unet_narrow),
|
| 271 |
+
'128': int(128 * channel_multiplier * unet_narrow),
|
| 272 |
+
'256': int(64 * channel_multiplier * unet_narrow),
|
| 273 |
+
'512': int(32 * channel_multiplier * unet_narrow),
|
| 274 |
+
'1024': int(16 * channel_multiplier * unet_narrow)
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
self.log_size = int(math.log(out_size, 2))
|
| 278 |
+
first_out_size = 2**(int(math.log(out_size, 2)))
|
| 279 |
+
|
| 280 |
+
self.conv_body_first = ConvLayer(3, channels[f'{first_out_size}'], 1, bias=True, activate=True)
|
| 281 |
+
|
| 282 |
+
# downsample
|
| 283 |
+
in_channels = channels[f'{first_out_size}']
|
| 284 |
+
self.conv_body_down = nn.ModuleList()
|
| 285 |
+
for i in range(self.log_size, 2, -1):
|
| 286 |
+
out_channels = channels[f'{2**(i - 1)}']
|
| 287 |
+
self.conv_body_down.append(ResBlock(in_channels, out_channels, resample_kernel))
|
| 288 |
+
in_channels = out_channels
|
| 289 |
+
|
| 290 |
+
self.final_conv = ConvLayer(in_channels, channels['4'], 3, bias=True, activate=True)
|
| 291 |
+
|
| 292 |
+
# upsample
|
| 293 |
+
in_channels = channels['4']
|
| 294 |
+
self.conv_body_up = nn.ModuleList()
|
| 295 |
+
for i in range(3, self.log_size + 1):
|
| 296 |
+
out_channels = channels[f'{2**i}']
|
| 297 |
+
self.conv_body_up.append(ResUpBlock(in_channels, out_channels))
|
| 298 |
+
in_channels = out_channels
|
| 299 |
+
|
| 300 |
+
# to RGB
|
| 301 |
+
self.toRGB = nn.ModuleList()
|
| 302 |
+
for i in range(3, self.log_size + 1):
|
| 303 |
+
self.toRGB.append(EqualConv2d(channels[f'{2**i}'], 3, 1, stride=1, padding=0, bias=True, bias_init_val=0))
|
| 304 |
+
|
| 305 |
+
if different_w:
|
| 306 |
+
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
|
| 307 |
+
else:
|
| 308 |
+
linear_out_channel = num_style_feat
|
| 309 |
+
|
| 310 |
+
self.final_linear = EqualLinear(
|
| 311 |
+
channels['4'] * 4 * 4, linear_out_channel, bias=True, bias_init_val=0, lr_mul=1, activation=None)
|
| 312 |
+
|
| 313 |
+
# the decoder: stylegan2 generator with SFT modulations
|
| 314 |
+
self.stylegan_decoder = StyleGAN2GeneratorSFT(
|
| 315 |
+
out_size=out_size,
|
| 316 |
+
num_style_feat=num_style_feat,
|
| 317 |
+
num_mlp=num_mlp,
|
| 318 |
+
channel_multiplier=channel_multiplier,
|
| 319 |
+
resample_kernel=resample_kernel,
|
| 320 |
+
lr_mlp=lr_mlp,
|
| 321 |
+
narrow=narrow,
|
| 322 |
+
sft_half=sft_half)
|
| 323 |
+
|
| 324 |
+
# load pre-trained stylegan2 model if necessary
|
| 325 |
+
if decoder_load_path:
|
| 326 |
+
self.stylegan_decoder.load_state_dict(
|
| 327 |
+
torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
|
| 328 |
+
# fix decoder without updating params
|
| 329 |
+
if fix_decoder:
|
| 330 |
+
for _, param in self.stylegan_decoder.named_parameters():
|
| 331 |
+
param.requires_grad = False
|
| 332 |
+
|
| 333 |
+
# for SFT modulations (scale and shift)
|
| 334 |
+
self.condition_scale = nn.ModuleList()
|
| 335 |
+
self.condition_shift = nn.ModuleList()
|
| 336 |
+
for i in range(3, self.log_size + 1):
|
| 337 |
+
out_channels = channels[f'{2**i}']
|
| 338 |
+
if sft_half:
|
| 339 |
+
sft_out_channels = out_channels
|
| 340 |
+
else:
|
| 341 |
+
sft_out_channels = out_channels * 2
|
| 342 |
+
self.condition_scale.append(
|
| 343 |
+
nn.Sequential(
|
| 344 |
+
EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
|
| 345 |
+
ScaledLeakyReLU(0.2),
|
| 346 |
+
EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=1)))
|
| 347 |
+
self.condition_shift.append(
|
| 348 |
+
nn.Sequential(
|
| 349 |
+
EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
|
| 350 |
+
ScaledLeakyReLU(0.2),
|
| 351 |
+
EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0)))
|
| 352 |
+
|
| 353 |
+
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
|
| 354 |
+
"""Forward function for GFPGANv1.
|
| 355 |
+
|
| 356 |
+
Args:
|
| 357 |
+
x (Tensor): Input images.
|
| 358 |
+
return_latents (bool): Whether to return style latents. Default: False.
|
| 359 |
+
return_rgb (bool): Whether return intermediate rgb images. Default: True.
|
| 360 |
+
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
|
| 361 |
+
"""
|
| 362 |
+
conditions = []
|
| 363 |
+
unet_skips = []
|
| 364 |
+
out_rgbs = []
|
| 365 |
+
|
| 366 |
+
# encoder
|
| 367 |
+
feat = self.conv_body_first(x)
|
| 368 |
+
for i in range(self.log_size - 2):
|
| 369 |
+
feat = self.conv_body_down[i](feat)
|
| 370 |
+
unet_skips.insert(0, feat)
|
| 371 |
+
|
| 372 |
+
feat = self.final_conv(feat)
|
| 373 |
+
|
| 374 |
+
# style code
|
| 375 |
+
style_code = self.final_linear(feat.view(feat.size(0), -1))
|
| 376 |
+
if self.different_w:
|
| 377 |
+
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
|
| 378 |
+
|
| 379 |
+
# decode
|
| 380 |
+
for i in range(self.log_size - 2):
|
| 381 |
+
# add unet skip
|
| 382 |
+
feat = feat + unet_skips[i]
|
| 383 |
+
# ResUpLayer
|
| 384 |
+
feat = self.conv_body_up[i](feat)
|
| 385 |
+
# generate scale and shift for SFT layers
|
| 386 |
+
scale = self.condition_scale[i](feat)
|
| 387 |
+
conditions.append(scale.clone())
|
| 388 |
+
shift = self.condition_shift[i](feat)
|
| 389 |
+
conditions.append(shift.clone())
|
| 390 |
+
# generate rgb images
|
| 391 |
+
if return_rgb:
|
| 392 |
+
out_rgbs.append(self.toRGB[i](feat))
|
| 393 |
+
|
| 394 |
+
# decoder
|
| 395 |
+
image, _ = self.stylegan_decoder([style_code],
|
| 396 |
+
conditions,
|
| 397 |
+
return_latents=return_latents,
|
| 398 |
+
input_is_latent=self.input_is_latent,
|
| 399 |
+
randomize_noise=randomize_noise)
|
| 400 |
+
|
| 401 |
+
return image, out_rgbs
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
@ARCH_REGISTRY.register()
|
| 405 |
+
class FacialComponentDiscriminator(nn.Module):
|
| 406 |
+
"""Facial component (eyes, mouth, noise) discriminator used in GFPGAN.
|
| 407 |
+
"""
|
| 408 |
+
|
| 409 |
+
def __init__(self):
|
| 410 |
+
super(FacialComponentDiscriminator, self).__init__()
|
| 411 |
+
# It now uses a VGG-style architectrue with fixed model size
|
| 412 |
+
self.conv1 = ConvLayer(3, 64, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
|
| 413 |
+
self.conv2 = ConvLayer(64, 128, 3, downsample=True, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
|
| 414 |
+
self.conv3 = ConvLayer(128, 128, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
|
| 415 |
+
self.conv4 = ConvLayer(128, 256, 3, downsample=True, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
|
| 416 |
+
self.conv5 = ConvLayer(256, 256, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
|
| 417 |
+
self.final_conv = ConvLayer(256, 1, 3, bias=True, activate=False)
|
| 418 |
+
|
| 419 |
+
def forward(self, x, return_feats=False):
|
| 420 |
+
"""Forward function for FacialComponentDiscriminator.
|
| 421 |
+
|
| 422 |
+
Args:
|
| 423 |
+
x (Tensor): Input images.
|
| 424 |
+
return_feats (bool): Whether to return intermediate features. Default: False.
|
| 425 |
+
"""
|
| 426 |
+
feat = self.conv1(x)
|
| 427 |
+
feat = self.conv3(self.conv2(feat))
|
| 428 |
+
rlt_feats = []
|
| 429 |
+
if return_feats:
|
| 430 |
+
rlt_feats.append(feat.clone())
|
| 431 |
+
feat = self.conv5(self.conv4(feat))
|
| 432 |
+
if return_feats:
|
| 433 |
+
rlt_feats.append(feat.clone())
|
| 434 |
+
out = self.final_conv(feat)
|
| 435 |
+
|
| 436 |
+
if return_feats:
|
| 437 |
+
return out, rlt_feats
|
| 438 |
+
else:
|
| 439 |
+
return out, None
|