Spaces:
No application file
No application file
culture
commited on
Commit
·
c483844
1
Parent(s):
a229316
Upload gfpgan/data/ffhq_degradation_dataset.py
Browse files
gfpgan/data/ffhq_degradation_dataset.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os.path as osp
|
| 5 |
+
import torch
|
| 6 |
+
import torch.utils.data as data
|
| 7 |
+
from basicsr.data import degradations as degradations
|
| 8 |
+
from basicsr.data.data_util import paths_from_folder
|
| 9 |
+
from basicsr.data.transforms import augment
|
| 10 |
+
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
|
| 11 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
| 12 |
+
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast, adjust_hue, adjust_saturation,
|
| 13 |
+
normalize)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@DATASET_REGISTRY.register()
|
| 17 |
+
class FFHQDegradationDataset(data.Dataset):
|
| 18 |
+
"""FFHQ dataset for GFPGAN.
|
| 19 |
+
|
| 20 |
+
It reads high resolution images, and then generate low-quality (LQ) images on-the-fly.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
opt (dict): Config for train datasets. It contains the following keys:
|
| 24 |
+
dataroot_gt (str): Data root path for gt.
|
| 25 |
+
io_backend (dict): IO backend type and other kwarg.
|
| 26 |
+
mean (list | tuple): Image mean.
|
| 27 |
+
std (list | tuple): Image std.
|
| 28 |
+
use_hflip (bool): Whether to horizontally flip.
|
| 29 |
+
Please see more options in the codes.
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def __init__(self, opt):
|
| 33 |
+
super(FFHQDegradationDataset, self).__init__()
|
| 34 |
+
self.opt = opt
|
| 35 |
+
# file client (io backend)
|
| 36 |
+
self.file_client = None
|
| 37 |
+
self.io_backend_opt = opt['io_backend']
|
| 38 |
+
|
| 39 |
+
self.gt_folder = opt['dataroot_gt']
|
| 40 |
+
self.mean = opt['mean']
|
| 41 |
+
self.std = opt['std']
|
| 42 |
+
self.out_size = opt['out_size']
|
| 43 |
+
|
| 44 |
+
self.crop_components = opt.get('crop_components', False) # facial components
|
| 45 |
+
self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1) # whether enlarge eye regions
|
| 46 |
+
|
| 47 |
+
if self.crop_components:
|
| 48 |
+
# load component list from a pre-process pth files
|
| 49 |
+
self.components_list = torch.load(opt.get('component_path'))
|
| 50 |
+
|
| 51 |
+
# file client (lmdb io backend)
|
| 52 |
+
if self.io_backend_opt['type'] == 'lmdb':
|
| 53 |
+
self.io_backend_opt['db_paths'] = self.gt_folder
|
| 54 |
+
if not self.gt_folder.endswith('.lmdb'):
|
| 55 |
+
raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
|
| 56 |
+
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
|
| 57 |
+
self.paths = [line.split('.')[0] for line in fin]
|
| 58 |
+
else:
|
| 59 |
+
# disk backend: scan file list from a folder
|
| 60 |
+
self.paths = paths_from_folder(self.gt_folder)
|
| 61 |
+
|
| 62 |
+
# degradation configurations
|
| 63 |
+
self.blur_kernel_size = opt['blur_kernel_size']
|
| 64 |
+
self.kernel_list = opt['kernel_list']
|
| 65 |
+
self.kernel_prob = opt['kernel_prob']
|
| 66 |
+
self.blur_sigma = opt['blur_sigma']
|
| 67 |
+
self.downsample_range = opt['downsample_range']
|
| 68 |
+
self.noise_range = opt['noise_range']
|
| 69 |
+
self.jpeg_range = opt['jpeg_range']
|
| 70 |
+
|
| 71 |
+
# color jitter
|
| 72 |
+
self.color_jitter_prob = opt.get('color_jitter_prob')
|
| 73 |
+
self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob')
|
| 74 |
+
self.color_jitter_shift = opt.get('color_jitter_shift', 20)
|
| 75 |
+
# to gray
|
| 76 |
+
self.gray_prob = opt.get('gray_prob')
|
| 77 |
+
|
| 78 |
+
logger = get_root_logger()
|
| 79 |
+
logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]')
|
| 80 |
+
logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]')
|
| 81 |
+
logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
|
| 82 |
+
logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]')
|
| 83 |
+
|
| 84 |
+
if self.color_jitter_prob is not None:
|
| 85 |
+
logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}')
|
| 86 |
+
if self.gray_prob is not None:
|
| 87 |
+
logger.info(f'Use random gray. Prob: {self.gray_prob}')
|
| 88 |
+
self.color_jitter_shift /= 255.
|
| 89 |
+
|
| 90 |
+
@staticmethod
|
| 91 |
+
def color_jitter(img, shift):
|
| 92 |
+
"""jitter color: randomly jitter the RGB values, in numpy formats"""
|
| 93 |
+
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
|
| 94 |
+
img = img + jitter_val
|
| 95 |
+
img = np.clip(img, 0, 1)
|
| 96 |
+
return img
|
| 97 |
+
|
| 98 |
+
@staticmethod
|
| 99 |
+
def color_jitter_pt(img, brightness, contrast, saturation, hue):
|
| 100 |
+
"""jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats"""
|
| 101 |
+
fn_idx = torch.randperm(4)
|
| 102 |
+
for fn_id in fn_idx:
|
| 103 |
+
if fn_id == 0 and brightness is not None:
|
| 104 |
+
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
|
| 105 |
+
img = adjust_brightness(img, brightness_factor)
|
| 106 |
+
|
| 107 |
+
if fn_id == 1 and contrast is not None:
|
| 108 |
+
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
|
| 109 |
+
img = adjust_contrast(img, contrast_factor)
|
| 110 |
+
|
| 111 |
+
if fn_id == 2 and saturation is not None:
|
| 112 |
+
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
|
| 113 |
+
img = adjust_saturation(img, saturation_factor)
|
| 114 |
+
|
| 115 |
+
if fn_id == 3 and hue is not None:
|
| 116 |
+
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
|
| 117 |
+
img = adjust_hue(img, hue_factor)
|
| 118 |
+
return img
|
| 119 |
+
|
| 120 |
+
def get_component_coordinates(self, index, status):
|
| 121 |
+
"""Get facial component (left_eye, right_eye, mouth) coordinates from a pre-loaded pth file"""
|
| 122 |
+
components_bbox = self.components_list[f'{index:08d}']
|
| 123 |
+
if status[0]: # hflip
|
| 124 |
+
# exchange right and left eye
|
| 125 |
+
tmp = components_bbox['left_eye']
|
| 126 |
+
components_bbox['left_eye'] = components_bbox['right_eye']
|
| 127 |
+
components_bbox['right_eye'] = tmp
|
| 128 |
+
# modify the width coordinate
|
| 129 |
+
components_bbox['left_eye'][0] = self.out_size - components_bbox['left_eye'][0]
|
| 130 |
+
components_bbox['right_eye'][0] = self.out_size - components_bbox['right_eye'][0]
|
| 131 |
+
components_bbox['mouth'][0] = self.out_size - components_bbox['mouth'][0]
|
| 132 |
+
|
| 133 |
+
# get coordinates
|
| 134 |
+
locations = []
|
| 135 |
+
for part in ['left_eye', 'right_eye', 'mouth']:
|
| 136 |
+
mean = components_bbox[part][0:2]
|
| 137 |
+
half_len = components_bbox[part][2]
|
| 138 |
+
if 'eye' in part:
|
| 139 |
+
half_len *= self.eye_enlarge_ratio
|
| 140 |
+
loc = np.hstack((mean - half_len + 1, mean + half_len))
|
| 141 |
+
loc = torch.from_numpy(loc).float()
|
| 142 |
+
locations.append(loc)
|
| 143 |
+
return locations
|
| 144 |
+
|
| 145 |
+
def __getitem__(self, index):
|
| 146 |
+
if self.file_client is None:
|
| 147 |
+
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
| 148 |
+
|
| 149 |
+
# load gt image
|
| 150 |
+
# Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
|
| 151 |
+
gt_path = self.paths[index]
|
| 152 |
+
img_bytes = self.file_client.get(gt_path)
|
| 153 |
+
img_gt = imfrombytes(img_bytes, float32=True)
|
| 154 |
+
|
| 155 |
+
# random horizontal flip
|
| 156 |
+
img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True)
|
| 157 |
+
h, w, _ = img_gt.shape
|
| 158 |
+
|
| 159 |
+
# get facial component coordinates
|
| 160 |
+
if self.crop_components:
|
| 161 |
+
locations = self.get_component_coordinates(index, status)
|
| 162 |
+
loc_left_eye, loc_right_eye, loc_mouth = locations
|
| 163 |
+
|
| 164 |
+
# ------------------------ generate lq image ------------------------ #
|
| 165 |
+
# blur
|
| 166 |
+
kernel = degradations.random_mixed_kernels(
|
| 167 |
+
self.kernel_list,
|
| 168 |
+
self.kernel_prob,
|
| 169 |
+
self.blur_kernel_size,
|
| 170 |
+
self.blur_sigma,
|
| 171 |
+
self.blur_sigma, [-math.pi, math.pi],
|
| 172 |
+
noise_range=None)
|
| 173 |
+
img_lq = cv2.filter2D(img_gt, -1, kernel)
|
| 174 |
+
# downsample
|
| 175 |
+
scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1])
|
| 176 |
+
img_lq = cv2.resize(img_lq, (int(w // scale), int(h // scale)), interpolation=cv2.INTER_LINEAR)
|
| 177 |
+
# noise
|
| 178 |
+
if self.noise_range is not None:
|
| 179 |
+
img_lq = degradations.random_add_gaussian_noise(img_lq, self.noise_range)
|
| 180 |
+
# jpeg compression
|
| 181 |
+
if self.jpeg_range is not None:
|
| 182 |
+
img_lq = degradations.random_add_jpg_compression(img_lq, self.jpeg_range)
|
| 183 |
+
|
| 184 |
+
# resize to original size
|
| 185 |
+
img_lq = cv2.resize(img_lq, (w, h), interpolation=cv2.INTER_LINEAR)
|
| 186 |
+
|
| 187 |
+
# random color jitter (only for lq)
|
| 188 |
+
if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob):
|
| 189 |
+
img_lq = self.color_jitter(img_lq, self.color_jitter_shift)
|
| 190 |
+
# random to gray (only for lq)
|
| 191 |
+
if self.gray_prob and np.random.uniform() < self.gray_prob:
|
| 192 |
+
img_lq = cv2.cvtColor(img_lq, cv2.COLOR_BGR2GRAY)
|
| 193 |
+
img_lq = np.tile(img_lq[:, :, None], [1, 1, 3])
|
| 194 |
+
if self.opt.get('gt_gray'): # whether convert GT to gray images
|
| 195 |
+
img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2GRAY)
|
| 196 |
+
img_gt = np.tile(img_gt[:, :, None], [1, 1, 3]) # repeat the color channels
|
| 197 |
+
|
| 198 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
| 199 |
+
img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
|
| 200 |
+
|
| 201 |
+
# random color jitter (pytorch version) (only for lq)
|
| 202 |
+
if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob):
|
| 203 |
+
brightness = self.opt.get('brightness', (0.5, 1.5))
|
| 204 |
+
contrast = self.opt.get('contrast', (0.5, 1.5))
|
| 205 |
+
saturation = self.opt.get('saturation', (0, 1.5))
|
| 206 |
+
hue = self.opt.get('hue', (-0.1, 0.1))
|
| 207 |
+
img_lq = self.color_jitter_pt(img_lq, brightness, contrast, saturation, hue)
|
| 208 |
+
|
| 209 |
+
# round and clip
|
| 210 |
+
img_lq = torch.clamp((img_lq * 255.0).round(), 0, 255) / 255.
|
| 211 |
+
|
| 212 |
+
# normalize
|
| 213 |
+
normalize(img_gt, self.mean, self.std, inplace=True)
|
| 214 |
+
normalize(img_lq, self.mean, self.std, inplace=True)
|
| 215 |
+
|
| 216 |
+
if self.crop_components:
|
| 217 |
+
return_dict = {
|
| 218 |
+
'lq': img_lq,
|
| 219 |
+
'gt': img_gt,
|
| 220 |
+
'gt_path': gt_path,
|
| 221 |
+
'loc_left_eye': loc_left_eye,
|
| 222 |
+
'loc_right_eye': loc_right_eye,
|
| 223 |
+
'loc_mouth': loc_mouth
|
| 224 |
+
}
|
| 225 |
+
return return_dict
|
| 226 |
+
else:
|
| 227 |
+
return {'lq': img_lq, 'gt': img_gt, 'gt_path': gt_path}
|
| 228 |
+
|
| 229 |
+
def __len__(self):
|
| 230 |
+
return len(self.paths)
|