Spaces:
Runtime error
Runtime error
| # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import paddle | |
| from paddle import ParamAttr | |
| import paddle.nn as nn | |
| import paddle.nn.functional as F | |
| from paddle.nn import Conv2D, BatchNorm, Linear, Dropout | |
| from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D | |
| from paddleseg.cvlibs import manager | |
| from paddleseg.utils import utils | |
| class ConvBlock(nn.Layer): | |
| def __init__(self, input_channels, output_channels, groups, name=None): | |
| super(ConvBlock, self).__init__() | |
| self.groups = groups | |
| self._conv_1 = Conv2D( | |
| in_channels=input_channels, | |
| out_channels=output_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| weight_attr=ParamAttr(name=name + "1_weights"), | |
| bias_attr=False) | |
| if groups == 2 or groups == 3 or groups == 4: | |
| self._conv_2 = Conv2D( | |
| in_channels=output_channels, | |
| out_channels=output_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| weight_attr=ParamAttr(name=name + "2_weights"), | |
| bias_attr=False) | |
| if groups == 3 or groups == 4: | |
| self._conv_3 = Conv2D( | |
| in_channels=output_channels, | |
| out_channels=output_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| weight_attr=ParamAttr(name=name + "3_weights"), | |
| bias_attr=False) | |
| if groups == 4: | |
| self._conv_4 = Conv2D( | |
| in_channels=output_channels, | |
| out_channels=output_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| weight_attr=ParamAttr(name=name + "4_weights"), | |
| bias_attr=False) | |
| self._pool = MaxPool2D( | |
| kernel_size=2, stride=2, padding=0, return_mask=True) | |
| def forward(self, inputs): | |
| x = self._conv_1(inputs) | |
| x = F.relu(x) | |
| if self.groups == 2 or self.groups == 3 or self.groups == 4: | |
| x = self._conv_2(x) | |
| x = F.relu(x) | |
| if self.groups == 3 or self.groups == 4: | |
| x = self._conv_3(x) | |
| x = F.relu(x) | |
| if self.groups == 4: | |
| x = self._conv_4(x) | |
| x = F.relu(x) | |
| skip = x | |
| x, max_indices = self._pool(x) | |
| return x, max_indices, skip | |
| class VGGNet(nn.Layer): | |
| def __init__(self, input_channels=3, layers=11, pretrained=None): | |
| super(VGGNet, self).__init__() | |
| self.pretrained = pretrained | |
| self.layers = layers | |
| self.vgg_configure = { | |
| 11: [1, 1, 2, 2, 2], | |
| 13: [2, 2, 2, 2, 2], | |
| 16: [2, 2, 3, 3, 3], | |
| 19: [2, 2, 4, 4, 4] | |
| } | |
| assert self.layers in self.vgg_configure.keys(), \ | |
| "supported layers are {} but input layer is {}".format( | |
| self.vgg_configure.keys(), layers) | |
| self.groups = self.vgg_configure[self.layers] | |
| # matting的第一层卷积输入为4通道,初始化是直接初始化为0 | |
| self._conv_block_1 = ConvBlock( | |
| input_channels, 64, self.groups[0], name="conv1_") | |
| self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_") | |
| self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_") | |
| self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_") | |
| self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_") | |
| # 这一层的初始化需要利用vgg fc6的参数转换后进行初始化,可以暂时不考虑初始化 | |
| self._conv_6 = Conv2D( | |
| 512, 512, kernel_size=3, padding=1, bias_attr=False) | |
| self.init_weight() | |
| def forward(self, inputs): | |
| fea_list = [] | |
| ids_list = [] | |
| x, ids, skip = self._conv_block_1(inputs) | |
| fea_list.append(skip) | |
| ids_list.append(ids) | |
| x, ids, skip = self._conv_block_2(x) | |
| fea_list.append(skip) | |
| ids_list.append(ids) | |
| x, ids, skip = self._conv_block_3(x) | |
| fea_list.append(skip) | |
| ids_list.append(ids) | |
| x, ids, skip = self._conv_block_4(x) | |
| fea_list.append(skip) | |
| ids_list.append(ids) | |
| x, ids, skip = self._conv_block_5(x) | |
| fea_list.append(skip) | |
| ids_list.append(ids) | |
| x = F.relu(self._conv_6(x)) | |
| fea_list.append(x) | |
| return fea_list | |
| def init_weight(self): | |
| if self.pretrained is not None: | |
| utils.load_pretrained_model(self, self.pretrained) | |
| def VGG11(**args): | |
| model = VGGNet(layers=11, **args) | |
| return model | |
| def VGG13(**args): | |
| model = VGGNet(layers=13, **args) | |
| return model | |
| def VGG16(**args): | |
| model = VGGNet(layers=16, **args) | |
| return model | |
| def VGG19(**args): | |
| model = VGGNet(layers=19, **args) | |
| return model | |