Spaces:
Runtime error
Runtime error
| # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # The gca code was heavily based on https://github.com/Yaoyi-Li/GCA-Matting | |
| # and https://github.com/open-mmlab/mmediting | |
| import paddle | |
| import paddle.nn as nn | |
| import paddle.nn.functional as F | |
| from paddleseg.models import layers | |
| from paddleseg import utils | |
| from paddleseg.cvlibs import manager, param_init | |
| from ppmatting.models.layers import GuidedCxtAtten | |
| class GCABaseline(nn.Layer): | |
| def __init__(self, backbone, pretrained=None): | |
| super().__init__() | |
| self.encoder = backbone | |
| self.decoder = ResShortCut_D_Dec([2, 3, 3, 2]) | |
| def forward(self, inputs): | |
| x = paddle.concat([inputs['img'], inputs['trimap'] / 255], axis=1) | |
| embedding, mid_fea = self.encoder(x) | |
| alpha_pred = self.decoder(embedding, mid_fea) | |
| if self.training: | |
| logit_dict = {'alpha_pred': alpha_pred, } | |
| loss_dict = {} | |
| alpha_gt = inputs['alpha'] | |
| loss_dict["alpha"] = F.l1_loss(alpha_pred, alpha_gt) | |
| loss_dict["all"] = loss_dict["alpha"] | |
| return logit_dict, loss_dict | |
| return alpha_pred | |
| class GCA(GCABaseline): | |
| def __init__(self, backbone, pretrained=None): | |
| super().__init__(backbone, pretrained) | |
| self.decoder = ResGuidedCxtAtten_Dec([2, 3, 3, 2]) | |
| def conv5x5(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
| """5x5 convolution with padding""" | |
| return nn.Conv2D( | |
| in_planes, | |
| out_planes, | |
| kernel_size=5, | |
| stride=stride, | |
| padding=2, | |
| groups=groups, | |
| bias_attr=False, | |
| dilation=dilation) | |
| def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
| """3x3 convolution with padding""" | |
| return nn.Conv2D( | |
| in_planes, | |
| out_planes, | |
| kernel_size=3, | |
| stride=stride, | |
| padding=dilation, | |
| groups=groups, | |
| bias_attr=False, | |
| dilation=dilation) | |
| def conv1x1(in_planes, out_planes, stride=1): | |
| """1x1 convolution""" | |
| return nn.Conv2D( | |
| in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False) | |
| class BasicBlock(nn.Layer): | |
| expansion = 1 | |
| def __init__(self, | |
| inplanes, | |
| planes, | |
| stride=1, | |
| upsample=None, | |
| norm_layer=None, | |
| large_kernel=False): | |
| super().__init__() | |
| if norm_layer is None: | |
| norm_layer = nn.BatchNorm | |
| self.stride = stride | |
| conv = conv5x5 if large_kernel else conv3x3 | |
| # Both self.conv1 and self.downsample layers downsample the input when stride != 1 | |
| if self.stride > 1: | |
| self.conv1 = nn.utils.spectral_norm( | |
| nn.Conv2DTranspose( | |
| inplanes, | |
| inplanes, | |
| kernel_size=4, | |
| stride=2, | |
| padding=1, | |
| bias_attr=False)) | |
| else: | |
| self.conv1 = nn.utils.spectral_norm(conv(inplanes, inplanes)) | |
| self.bn1 = norm_layer(inplanes) | |
| self.activation = nn.LeakyReLU(0.2) | |
| self.conv2 = nn.utils.spectral_norm(conv(inplanes, planes)) | |
| self.bn2 = norm_layer(planes) | |
| self.upsample = upsample | |
| def forward(self, x): | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.activation(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.upsample is not None: | |
| identity = self.upsample(x) | |
| out += identity | |
| out = self.activation(out) | |
| return out | |
| class ResNet_D_Dec(nn.Layer): | |
| def __init__(self, | |
| layers=[3, 4, 4, 2], | |
| norm_layer=None, | |
| large_kernel=False, | |
| late_downsample=False): | |
| super().__init__() | |
| if norm_layer is None: | |
| norm_layer = nn.BatchNorm | |
| self._norm_layer = norm_layer | |
| self.large_kernel = large_kernel | |
| self.kernel_size = 5 if self.large_kernel else 3 | |
| self.inplanes = 512 if layers[0] > 0 else 256 | |
| self.late_downsample = late_downsample | |
| self.midplanes = 64 if late_downsample else 32 | |
| self.conv1 = nn.utils.spectral_norm( | |
| nn.Conv2DTranspose( | |
| self.midplanes, | |
| 32, | |
| kernel_size=4, | |
| stride=2, | |
| padding=1, | |
| bias_attr=False)) | |
| self.bn1 = norm_layer(32) | |
| self.leaky_relu = nn.LeakyReLU(0.2) | |
| self.conv2 = nn.Conv2D( | |
| 32, | |
| 1, | |
| kernel_size=self.kernel_size, | |
| stride=1, | |
| padding=self.kernel_size // 2) | |
| self.upsample = nn.UpsamplingNearest2D(scale_factor=2) | |
| self.tanh = nn.Tanh() | |
| self.layer1 = self._make_layer(BasicBlock, 256, layers[0], stride=2) | |
| self.layer2 = self._make_layer(BasicBlock, 128, layers[1], stride=2) | |
| self.layer3 = self._make_layer(BasicBlock, 64, layers[2], stride=2) | |
| self.layer4 = self._make_layer( | |
| BasicBlock, self.midplanes, layers[3], stride=2) | |
| self.init_weight() | |
| def _make_layer(self, block, planes, blocks, stride=1): | |
| if blocks == 0: | |
| return nn.Sequential(nn.Identity()) | |
| norm_layer = self._norm_layer | |
| upsample = None | |
| if stride != 1: | |
| upsample = nn.Sequential( | |
| nn.UpsamplingNearest2D(scale_factor=2), | |
| nn.utils.spectral_norm( | |
| conv1x1(self.inplanes, planes * block.expansion)), | |
| norm_layer(planes * block.expansion), ) | |
| elif self.inplanes != planes * block.expansion: | |
| upsample = nn.Sequential( | |
| nn.utils.spectral_norm( | |
| conv1x1(self.inplanes, planes * block.expansion)), | |
| norm_layer(planes * block.expansion), ) | |
| layers = [ | |
| block(self.inplanes, planes, stride, upsample, norm_layer, | |
| self.large_kernel) | |
| ] | |
| self.inplanes = planes * block.expansion | |
| for _ in range(1, blocks): | |
| layers.append( | |
| block( | |
| self.inplanes, | |
| planes, | |
| norm_layer=norm_layer, | |
| large_kernel=self.large_kernel)) | |
| return nn.Sequential(*layers) | |
| def forward(self, x, mid_fea): | |
| x = self.layer1(x) # N x 256 x 32 x 32 | |
| print(x.shape) | |
| x = self.layer2(x) # N x 128 x 64 x 64 | |
| print(x.shape) | |
| x = self.layer3(x) # N x 64 x 128 x 128 | |
| print(x.shape) | |
| x = self.layer4(x) # N x 32 x 256 x 256 | |
| print(x.shape) | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.leaky_relu(x) | |
| x = self.conv2(x) | |
| alpha = (self.tanh(x) + 1.0) / 2.0 | |
| return alpha | |
| def init_weight(self): | |
| for layer in self.sublayers(): | |
| if isinstance(layer, nn.Conv2D): | |
| if hasattr(layer, "weight_orig"): | |
| param = layer.weight_orig | |
| else: | |
| param = layer.weight | |
| param_init.xavier_uniform(param) | |
| elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)): | |
| param_init.constant_init(layer.weight, value=1.0) | |
| param_init.constant_init(layer.bias, value=0.0) | |
| elif isinstance(layer, BasicBlock): | |
| param_init.constant_init(layer.bn2.weight, value=0.0) | |
| class ResShortCut_D_Dec(ResNet_D_Dec): | |
| def __init__(self, | |
| layers, | |
| norm_layer=None, | |
| large_kernel=False, | |
| late_downsample=False): | |
| super().__init__( | |
| layers, norm_layer, large_kernel, late_downsample=late_downsample) | |
| def forward(self, x, mid_fea): | |
| fea1, fea2, fea3, fea4, fea5 = mid_fea['shortcut'] | |
| x = self.layer1(x) + fea5 | |
| x = self.layer2(x) + fea4 | |
| x = self.layer3(x) + fea3 | |
| x = self.layer4(x) + fea2 | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.leaky_relu(x) + fea1 | |
| x = self.conv2(x) | |
| alpha = (self.tanh(x) + 1.0) / 2.0 | |
| return alpha | |
| class ResGuidedCxtAtten_Dec(ResNet_D_Dec): | |
| def __init__(self, | |
| layers, | |
| norm_layer=None, | |
| large_kernel=False, | |
| late_downsample=False): | |
| super().__init__( | |
| layers, norm_layer, large_kernel, late_downsample=late_downsample) | |
| self.gca = GuidedCxtAtten(128, 128) | |
| def forward(self, x, mid_fea): | |
| fea1, fea2, fea3, fea4, fea5 = mid_fea['shortcut'] | |
| im = mid_fea['image_fea'] | |
| x = self.layer1(x) + fea5 # N x 256 x 32 x 32 | |
| x = self.layer2(x) + fea4 # N x 128 x 64 x 64 | |
| x = self.gca(im, x, mid_fea['unknown']) # contextual attention | |
| x = self.layer3(x) + fea3 # N x 64 x 128 x 128 | |
| x = self.layer4(x) + fea2 # N x 32 x 256 x 256 | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.leaky_relu(x) + fea1 | |
| x = self.conv2(x) | |
| alpha = (self.tanh(x) + 1.0) / 2.0 | |
| return alpha | |