Spaces:
Runtime error
Runtime error
| # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import paddle | |
| import paddle.nn as nn | |
| import paddle.nn.functional as F | |
| from paddleseg.cvlibs import manager | |
| import cv2 | |
| class MRSD(nn.Layer): | |
| def __init__(self, eps=1e-6): | |
| super().__init__() | |
| self.eps = eps | |
| def forward(self, logit, label, mask=None): | |
| """ | |
| Forward computation. | |
| Args: | |
| logit (Tensor): Logit tensor, the data type is float32, float64. | |
| label (Tensor): Label tensor, the data type is float32, float64. The shape should equal to logit. | |
| mask (Tensor, optional): The mask where the loss valid. Default: None. | |
| """ | |
| if len(label.shape) == 3: | |
| label = label.unsqueeze(1) | |
| sd = paddle.square(logit - label) | |
| loss = paddle.sqrt(sd + self.eps) | |
| if mask is not None: | |
| mask = mask.astype('float32') | |
| if len(mask.shape) == 3: | |
| mask = mask.unsqueeze(1) | |
| loss = loss * mask | |
| loss = loss.sum() / (mask.sum() + self.eps) | |
| mask.stop_gradient = True | |
| else: | |
| loss = loss.mean() | |
| return loss | |
| class GradientLoss(nn.Layer): | |
| def __init__(self, eps=1e-6): | |
| super().__init__() | |
| self.kernel_x, self.kernel_y = self.sobel_kernel() | |
| self.eps = eps | |
| def forward(self, logit, label, mask=None): | |
| if len(label.shape) == 3: | |
| label = label.unsqueeze(1) | |
| if mask is not None: | |
| if len(mask.shape) == 3: | |
| mask = mask.unsqueeze(1) | |
| logit = logit * mask | |
| label = label * mask | |
| loss = paddle.sum( | |
| F.l1_loss(self.sobel(logit), self.sobel(label), 'none')) / ( | |
| mask.sum() + self.eps) | |
| else: | |
| loss = F.l1_loss(self.sobel(logit), self.sobel(label), 'mean') | |
| return loss | |
| def sobel(self, input): | |
| """Using Sobel to compute gradient. Return the magnitude.""" | |
| if not len(input.shape) == 4: | |
| raise ValueError("Invalid input shape, we expect NCHW, but it is ", | |
| input.shape) | |
| n, c, h, w = input.shape | |
| input_pad = paddle.reshape(input, (n * c, 1, h, w)) | |
| input_pad = F.pad(input_pad, pad=[1, 1, 1, 1], mode='replicate') | |
| grad_x = F.conv2d(input_pad, self.kernel_x, padding=0) | |
| grad_y = F.conv2d(input_pad, self.kernel_y, padding=0) | |
| mag = paddle.sqrt(grad_x * grad_x + grad_y * grad_y + self.eps) | |
| mag = paddle.reshape(mag, (n, c, h, w)) | |
| return mag | |
| def sobel_kernel(self): | |
| kernel_x = paddle.to_tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], | |
| [-1.0, 0.0, 1.0]]).astype('float32') | |
| kernel_x = kernel_x / kernel_x.abs().sum() | |
| kernel_y = kernel_x.transpose([1, 0]) | |
| kernel_x = kernel_x.unsqueeze(0).unsqueeze(0) | |
| kernel_y = kernel_y.unsqueeze(0).unsqueeze(0) | |
| kernel_x.stop_gradient = True | |
| kernel_y.stop_gradient = True | |
| return kernel_x, kernel_y | |
| class LaplacianLoss(nn.Layer): | |
| """ | |
| Laplacian loss is refer to | |
| https://github.com/JizhiziLi/AIM/blob/master/core/evaluate.py#L83 | |
| """ | |
| def __init__(self): | |
| super().__init__() | |
| self.gauss_kernel = self.build_gauss_kernel( | |
| size=5, sigma=1.0, n_channels=1) | |
| def forward(self, logit, label, mask=None): | |
| if len(label.shape) == 3: | |
| label = label.unsqueeze(1) | |
| if mask is not None: | |
| if len(mask.shape) == 3: | |
| mask = mask.unsqueeze(1) | |
| logit = logit * mask | |
| label = label * mask | |
| pyr_label = self.laplacian_pyramid(label, self.gauss_kernel, 5) | |
| pyr_logit = self.laplacian_pyramid(logit, self.gauss_kernel, 5) | |
| loss = sum(F.l1_loss(a, b) for a, b in zip(pyr_label, pyr_logit)) | |
| return loss | |
| def build_gauss_kernel(self, size=5, sigma=1.0, n_channels=1): | |
| if size % 2 != 1: | |
| raise ValueError("kernel size must be uneven") | |
| grid = np.float32(np.mgrid[0:size, 0:size].T) | |
| gaussian = lambda x: np.exp((x - size // 2)**2 / (-2 * sigma**2))**2 | |
| kernel = np.sum(gaussian(grid), axis=2) | |
| kernel /= np.sum(kernel) | |
| kernel = np.tile(kernel, (n_channels, 1, 1)) | |
| kernel = paddle.to_tensor(kernel[:, None, :, :]) | |
| kernel.stop_gradient = True | |
| return kernel | |
| def conv_gauss(self, input, kernel): | |
| n_channels, _, kh, kw = kernel.shape | |
| x = F.pad(input, (kh // 2, kw // 2, kh // 2, kh // 2), mode='replicate') | |
| x = F.conv2d(x, kernel, groups=n_channels) | |
| return x | |
| def laplacian_pyramid(self, input, kernel, max_levels=5): | |
| current = input | |
| pyr = [] | |
| for level in range(max_levels): | |
| filtered = self.conv_gauss(current, kernel) | |
| diff = current - filtered | |
| pyr.append(diff) | |
| current = F.avg_pool2d(filtered, 2) | |
| pyr.append(current) | |
| return pyr | |