Spaces:
Sleeping
Sleeping
File size: 10,056 Bytes
9af3c0c c70bdf2 9af3c0c c70bdf2 9af3c0c c70bdf2 9af3c0c c70bdf2 9af3c0c c70bdf2 9af3c0c c70bdf2 9af3c0c c70bdf2 9af3c0c c70bdf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# pipeline taken from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
"""
This files includes a the data processing for Tox21.
As an input it takes a list of SMILES and it outputs a nested dictionary with
SMILES and target names as keys.
"""
import json
import numpy as np
import pandas as pd
from datasets import load_dataset
from sklearn.feature_selection import VarianceThreshold
from statsmodels.distributions.empirical_distribution import ECDF
from rdkit import Chem, DataStructs
from rdkit.Chem import Descriptors, rdFingerprintGenerator, MACCSkeys
from rdkit.Chem.rdchem import Mol
from .utils import (
USED_200_DESCR,
TOX_SMARTS_PATH,
Standardizer,
)
def create_cleaned_mol_objects(smiles: list[str]) -> tuple[list[Mol], np.ndarray]:
"""This function creates cleaned RDKit mol objects from a list of SMILES.
Args:
smiles (list[str]): list of SMILES
Returns:
list[Mol]: list of cleaned molecules
np.ndarray[bool]: mask that contains False at index `i`, if molecule in `smiles` at
index `i` could not be cleaned and was removed.
"""
sm = Standardizer(canon_taut=True)
clean_mol_mask = list()
mols = list()
for i, smile in enumerate(smiles):
mol = Chem.MolFromSmiles(smile)
standardized_mol, _ = sm.standardize_mol(mol)
is_cleaned = standardized_mol is not None
clean_mol_mask.append(is_cleaned)
if not is_cleaned:
continue
can_mol = Chem.MolFromSmiles(Chem.MolToSmiles(standardized_mol))
mols.append(can_mol)
return mols, np.array(clean_mol_mask)
def create_ecfp_fps(mols: list[Mol], radius=3, fpsize=2048, **kwargs) -> np.ndarray:
"""This function ECFP fingerprints for a list of molecules.
Args:
mols (list[Mol]): list of molecules
Returns:
np.ndarray: ECFP fingerprints of molecules
"""
ecfps = list()
for mol in mols:
gen = rdFingerprintGenerator.GetMorganGenerator(
countSimulation=True, fpSize=fpsize, radius=radius
)
fp_sparse_vec = gen.GetCountFingerprint(mol)
fp = np.zeros((0,), np.int8)
DataStructs.ConvertToNumpyArray(fp_sparse_vec, fp)
ecfps.append(fp)
return np.array(ecfps)
def create_maccs_keys(mols: list[Mol]) -> np.ndarray:
maccs = [MACCSkeys.GenMACCSKeys(x) for x in mols]
return np.array(maccs)
def get_tox_patterns(filepath: str):
"""This calculates tox features defined in tox_smarts.json.
Args:
mols: A list of Mol
n_jobs: If >1 multiprocessing is used
"""
# load patterns
with open(filepath) as f:
smarts_list = [s[1] for s in json.load(f)]
# Code does not work for this case
assert len([s for s in smarts_list if ("AND" in s) and ("OR" in s)]) == 0
# Chem.MolFromSmarts takes a long time so it pays of to parse all the smarts first
# and then use them for all molecules. This gives a huge speedup over existing code.
# a list of patterns, whether to negate the match result and how to join them to obtain one boolean value
all_patterns = []
for smarts in smarts_list:
patterns = [] # list of smarts-patterns
# value for each of the patterns above. Negates the values of the above later.
negations = []
if " AND " in smarts:
smarts = smarts.split(" AND ")
merge_any = False # If an ' AND ' is found all 'subsmarts' have to match
else:
# If there is an ' OR ' present it's enough is any of the 'subsmarts' match.
# This also accumulates smarts where neither ' OR ' nor ' AND ' occur
smarts = smarts.split(" OR ")
merge_any = True
# for all subsmarts check if they are preceded by 'NOT '
for s in smarts:
neg = s.startswith("NOT ")
if neg:
s = s[4:]
patterns.append(Chem.MolFromSmarts(s))
negations.append(neg)
all_patterns.append((patterns, negations, merge_any))
return all_patterns
def create_tox_features(mols: list[Mol], patterns: list) -> np.ndarray:
"""Matches the tox patterns against a molecule. Returns a boolean array"""
tox_data = []
for mol in mols:
mol_features = []
for patts, negations, merge_any in patterns:
matches = [mol.HasSubstructMatch(p) for p in patts]
matches = [m != n for m, n in zip(matches, negations)]
if merge_any:
pres = any(matches)
else:
pres = all(matches)
mol_features.append(pres)
tox_data.append(np.array(mol_features))
return np.array(tox_data)
def create_rdkit_descriptors(mols: list[Mol]) -> np.ndarray:
"""This function creates RDKit descriptors for a list of molecules.
Args:
mols (list[Mol]): list of molecules
Returns:
np.ndarray: RDKit descriptors of molecules
"""
rdkit_descriptors = list()
for mol in mols:
descrs = []
for _, descr_calc_fn in Descriptors._descList:
descrs.append(descr_calc_fn(mol))
descrs = np.array(descrs)
descrs = descrs[USED_200_DESCR]
rdkit_descriptors.append(descrs)
return np.array(rdkit_descriptors)
def create_quantiles(raw_features: np.ndarray, ecdfs: list) -> np.ndarray:
"""Create quantile values for given features using the columns
Args:
raw_features (np.ndarray): values to put into quantiles
ecdfs (list): ECDFs to use
Returns:
np.ndarray: computed quantiles
"""
quantiles = np.zeros_like(raw_features)
for column in range(raw_features.shape[1]):
raw_values = raw_features[:, column].reshape(-1)
ecdf = ecdfs[column]
q = ecdf(raw_values)
quantiles[:, column] = q
return quantiles
def fill(features, mask, value=np.nan):
n_mols = len(mask)
n_features = features.shape[1]
data = np.zeros(shape=(n_mols, n_features))
data.fill(value)
data[~mask] = features
return data
def create_descriptors(
smiles,
ecdfs=None,
feature_selection=None,
return_ecdfs=False,
return_feature_selection=False,
**kwargs,
):
# Create cleanded rdkit mol objects
mols, clean_mol_mask = create_cleaned_mol_objects(smiles)
print("Cleaned molecules")
tox_patterns = get_tox_patterns(TOX_SMARTS_PATH)
# Create fingerprints and descriptors
ecfps = create_ecfp_fps(mols, **kwargs)
# expand using mol_mask
ecfps = fill(ecfps, ~clean_mol_mask)
print("Created ECFP fingerprints")
tox = create_tox_features(mols, tox_patterns)
tox = fill(tox, ~clean_mol_mask)
print("Created Tox features")
# Create and save feature selection for ecfps and tox
if feature_selection is None:
print("Create Feature selection")
ecfps_selec = get_feature_selection(ecfps, **kwargs)
tox_selec = get_feature_selection(tox, **kwargs)
feature_selection = {"ecfps_selec": ecfps_selec, "tox_selec": tox_selec}
else:
ecfps_selec = feature_selection["ecfps_selec"]
tox_selec = feature_selection["tox_selec"]
ecfps = ecfps[:, ecfps_selec]
tox = tox[:, tox_selec]
maccs = create_maccs_keys(mols)
maccs = fill(maccs, ~clean_mol_mask)
print("Created MACCS keys")
rdkit_descrs = create_rdkit_descriptors(mols)
print("Created RDKit descriptors")
# Create and save ecdfs
if ecdfs is None:
print("Create ECDFs")
ecdfs = []
for column in range(rdkit_descrs.shape[1]):
raw_values = rdkit_descrs[:, column].reshape(-1)
ecdfs.append(ECDF(raw_values))
# Create quantiles
rdkit_descr_quantiles = create_quantiles(rdkit_descrs, ecdfs)
# expand using mol_mask
rdkit_descr_quantiles = fill(rdkit_descr_quantiles, ~clean_mol_mask)
print("Created quantiles of RDKit descriptors")
# concatenate features
features = {
"ecfps": ecfps,
"tox": tox,
"maccs": maccs,
"rdkit_descr_quantiles": rdkit_descr_quantiles,
}
return_dict = {"features": features}
if return_ecdfs:
return_dict["ecdfs"] = ecdfs
if return_feature_selection:
return_dict["feature_selection"] = feature_selection
return return_dict
def get_feature_selection(
raw_features: np.ndarray, min_var=0.01, max_corr=0.95, **kwargs
) -> np.ndarray:
# select features with at least min_var variation
var_thresh = VarianceThreshold(threshold=min_var)
feature_selection = var_thresh.fit(raw_features).get_support(indices=True)
n_features_preselected = len(feature_selection)
# Remove highly correlated features
corr_matrix = np.corrcoef(raw_features[:, feature_selection], rowvar=False)
upper_tri = np.triu(corr_matrix, k=1)
to_keep = np.ones((n_features_preselected,), dtype=bool)
for i in range(upper_tri.shape[0]):
for j in range(upper_tri.shape[1]):
if upper_tri[i, j] > max_corr:
to_keep[j] = False
feature_selection = feature_selection[to_keep]
return feature_selection
def get_tox21_split(token, cvfold=None):
ds = load_dataset("tschouis/tox21", token=token)
train_df = ds["train"].to_pandas()
val_df = ds["validation"].to_pandas()
if cvfold is None:
return {"train": train_df, "validation": val_df}
combined_df = pd.concat([train_df, val_df], ignore_index=True)
cvfold = float(cvfold)
# create new splits
cvfold = float(cvfold)
train_df = combined_df[combined_df.CVfold != cvfold]
val_df = combined_df[combined_df.CVfold == cvfold]
# exclude train mols that occur in the validation split
val_inchikeys = set(val_df["inchikey"])
train_df = train_df[~train_df["inchikey"].isin(val_inchikeys)]
return {
"train": train_df.reset_index(drop=True),
"validation": val_df.reset_index(drop=True),
}
|