File size: 10,056 Bytes
9af3c0c
 
 
 
 
 
 
 
 
 
 
c70bdf2
9af3c0c
c70bdf2
 
9af3c0c
 
 
 
 
 
 
 
c70bdf2
9af3c0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70bdf2
9af3c0c
 
 
 
 
 
 
 
 
 
 
c70bdf2
 
 
 
 
9af3c0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70bdf2
 
 
 
9af3c0c
 
 
 
 
c70bdf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9af3c0c
 
c70bdf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# pipeline taken from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py

"""
This files includes a the data processing for Tox21.
As an input it takes a list of SMILES and it outputs a nested dictionary with
SMILES and target names as keys.
"""

import json

import numpy as np
import pandas as pd

from datasets import load_dataset
from sklearn.feature_selection import VarianceThreshold
from statsmodels.distributions.empirical_distribution import ECDF

from rdkit import Chem, DataStructs
from rdkit.Chem import Descriptors, rdFingerprintGenerator, MACCSkeys
from rdkit.Chem.rdchem import Mol

from .utils import (
    USED_200_DESCR,
    TOX_SMARTS_PATH,
    Standardizer,
)


def create_cleaned_mol_objects(smiles: list[str]) -> tuple[list[Mol], np.ndarray]:
    """This function creates cleaned RDKit mol objects from a list of SMILES.

    Args:
        smiles (list[str]): list of SMILES

    Returns:
        list[Mol]: list of cleaned molecules
        np.ndarray[bool]: mask that contains False at index `i`, if molecule in `smiles` at
            index `i` could not be cleaned and was removed.
    """
    sm = Standardizer(canon_taut=True)

    clean_mol_mask = list()
    mols = list()
    for i, smile in enumerate(smiles):
        mol = Chem.MolFromSmiles(smile)
        standardized_mol, _ = sm.standardize_mol(mol)
        is_cleaned = standardized_mol is not None
        clean_mol_mask.append(is_cleaned)
        if not is_cleaned:
            continue
        can_mol = Chem.MolFromSmiles(Chem.MolToSmiles(standardized_mol))
        mols.append(can_mol)

    return mols, np.array(clean_mol_mask)


def create_ecfp_fps(mols: list[Mol], radius=3, fpsize=2048, **kwargs) -> np.ndarray:
    """This function ECFP fingerprints for a list of molecules.

    Args:
        mols (list[Mol]): list of molecules

    Returns:
        np.ndarray: ECFP fingerprints of molecules
    """
    ecfps = list()

    for mol in mols:
        gen = rdFingerprintGenerator.GetMorganGenerator(
            countSimulation=True, fpSize=fpsize, radius=radius
        )
        fp_sparse_vec = gen.GetCountFingerprint(mol)

        fp = np.zeros((0,), np.int8)
        DataStructs.ConvertToNumpyArray(fp_sparse_vec, fp)

        ecfps.append(fp)

    return np.array(ecfps)


def create_maccs_keys(mols: list[Mol]) -> np.ndarray:
    maccs = [MACCSkeys.GenMACCSKeys(x) for x in mols]
    return np.array(maccs)


def get_tox_patterns(filepath: str):
    """This calculates tox features defined in tox_smarts.json.
    Args:
        mols: A list of Mol
        n_jobs: If >1 multiprocessing is used
    """
    # load patterns
    with open(filepath) as f:
        smarts_list = [s[1] for s in json.load(f)]

    # Code does not work for this case
    assert len([s for s in smarts_list if ("AND" in s) and ("OR" in s)]) == 0

    # Chem.MolFromSmarts takes a long time so it pays of to parse all the smarts first
    # and then use them for all molecules. This gives a huge speedup over existing code.
    # a list of patterns, whether to negate the match result and how to join them to obtain one boolean value
    all_patterns = []
    for smarts in smarts_list:
        patterns = []  # list of smarts-patterns
        # value for each of the patterns above. Negates the values of the above later.
        negations = []

        if " AND " in smarts:
            smarts = smarts.split(" AND ")
            merge_any = False  # If an ' AND ' is found all 'subsmarts' have to match
        else:
            # If there is an ' OR ' present it's enough is any of the 'subsmarts' match.
            # This also accumulates smarts where neither ' OR ' nor ' AND ' occur
            smarts = smarts.split(" OR ")
            merge_any = True

        # for all subsmarts check if they are preceded by 'NOT '
        for s in smarts:
            neg = s.startswith("NOT ")
            if neg:
                s = s[4:]
            patterns.append(Chem.MolFromSmarts(s))
            negations.append(neg)

        all_patterns.append((patterns, negations, merge_any))
    return all_patterns


def create_tox_features(mols: list[Mol], patterns: list) -> np.ndarray:
    """Matches the tox patterns against a molecule. Returns a boolean array"""
    tox_data = []
    for mol in mols:
        mol_features = []
        for patts, negations, merge_any in patterns:
            matches = [mol.HasSubstructMatch(p) for p in patts]
            matches = [m != n for m, n in zip(matches, negations)]
            if merge_any:
                pres = any(matches)
            else:
                pres = all(matches)
            mol_features.append(pres)

        tox_data.append(np.array(mol_features))

    return np.array(tox_data)


def create_rdkit_descriptors(mols: list[Mol]) -> np.ndarray:
    """This function creates RDKit descriptors for a list of molecules.

    Args:
        mols (list[Mol]): list of molecules

    Returns:
        np.ndarray: RDKit descriptors of molecules
    """
    rdkit_descriptors = list()

    for mol in mols:
        descrs = []
        for _, descr_calc_fn in Descriptors._descList:
            descrs.append(descr_calc_fn(mol))

        descrs = np.array(descrs)
        descrs = descrs[USED_200_DESCR]
        rdkit_descriptors.append(descrs)

    return np.array(rdkit_descriptors)


def create_quantiles(raw_features: np.ndarray, ecdfs: list) -> np.ndarray:
    """Create quantile values for given features using the columns

    Args:
        raw_features (np.ndarray): values to put into quantiles
        ecdfs (list): ECDFs to use

    Returns:
        np.ndarray: computed quantiles
    """
    quantiles = np.zeros_like(raw_features)

    for column in range(raw_features.shape[1]):
        raw_values = raw_features[:, column].reshape(-1)
        ecdf = ecdfs[column]
        q = ecdf(raw_values)
        quantiles[:, column] = q

    return quantiles


def fill(features, mask, value=np.nan):
    n_mols = len(mask)
    n_features = features.shape[1]

    data = np.zeros(shape=(n_mols, n_features))
    data.fill(value)
    data[~mask] = features
    return data


def create_descriptors(
    smiles,
    ecdfs=None,
    feature_selection=None,
    return_ecdfs=False,
    return_feature_selection=False,
    **kwargs,
):
    # Create cleanded rdkit mol objects
    mols, clean_mol_mask = create_cleaned_mol_objects(smiles)
    print("Cleaned molecules")

    tox_patterns = get_tox_patterns(TOX_SMARTS_PATH)

    # Create fingerprints and descriptors
    ecfps = create_ecfp_fps(mols, **kwargs)
    # expand using mol_mask
    ecfps = fill(ecfps, ~clean_mol_mask)
    print("Created ECFP fingerprints")

    tox = create_tox_features(mols, tox_patterns)
    tox = fill(tox, ~clean_mol_mask)
    print("Created Tox features")

    # Create and save feature selection for ecfps and tox
    if feature_selection is None:
        print("Create Feature selection")
        ecfps_selec = get_feature_selection(ecfps, **kwargs)
        tox_selec = get_feature_selection(tox, **kwargs)
        feature_selection = {"ecfps_selec": ecfps_selec, "tox_selec": tox_selec}

    else:
        ecfps_selec = feature_selection["ecfps_selec"]
        tox_selec = feature_selection["tox_selec"]

    ecfps = ecfps[:, ecfps_selec]
    tox = tox[:, tox_selec]

    maccs = create_maccs_keys(mols)
    maccs = fill(maccs, ~clean_mol_mask)
    print("Created MACCS keys")

    rdkit_descrs = create_rdkit_descriptors(mols)
    print("Created RDKit descriptors")

    # Create and save ecdfs
    if ecdfs is None:
        print("Create ECDFs")
        ecdfs = []
        for column in range(rdkit_descrs.shape[1]):
            raw_values = rdkit_descrs[:, column].reshape(-1)
            ecdfs.append(ECDF(raw_values))

    # Create quantiles
    rdkit_descr_quantiles = create_quantiles(rdkit_descrs, ecdfs)
    # expand using mol_mask
    rdkit_descr_quantiles = fill(rdkit_descr_quantiles, ~clean_mol_mask)
    print("Created quantiles of RDKit descriptors")

    # concatenate features
    features = {
        "ecfps": ecfps,
        "tox": tox,
        "maccs": maccs,
        "rdkit_descr_quantiles": rdkit_descr_quantiles,
    }
    return_dict = {"features": features}
    if return_ecdfs:
        return_dict["ecdfs"] = ecdfs
    if return_feature_selection:
        return_dict["feature_selection"] = feature_selection
    return return_dict


def get_feature_selection(
    raw_features: np.ndarray, min_var=0.01, max_corr=0.95, **kwargs
) -> np.ndarray:
    # select features with at least min_var variation
    var_thresh = VarianceThreshold(threshold=min_var)
    feature_selection = var_thresh.fit(raw_features).get_support(indices=True)

    n_features_preselected = len(feature_selection)

    # Remove highly correlated features
    corr_matrix = np.corrcoef(raw_features[:, feature_selection], rowvar=False)
    upper_tri = np.triu(corr_matrix, k=1)
    to_keep = np.ones((n_features_preselected,), dtype=bool)
    for i in range(upper_tri.shape[0]):
        for j in range(upper_tri.shape[1]):
            if upper_tri[i, j] > max_corr:
                to_keep[j] = False

    feature_selection = feature_selection[to_keep]
    return feature_selection


def get_tox21_split(token, cvfold=None):
    ds = load_dataset("tschouis/tox21", token=token)

    train_df = ds["train"].to_pandas()
    val_df = ds["validation"].to_pandas()

    if cvfold is None:
        return {"train": train_df, "validation": val_df}

    combined_df = pd.concat([train_df, val_df], ignore_index=True)
    cvfold = float(cvfold)

    # create new splits
    cvfold = float(cvfold)
    train_df = combined_df[combined_df.CVfold != cvfold]
    val_df = combined_df[combined_df.CVfold == cvfold]

    # exclude train mols that occur in the validation split
    val_inchikeys = set(val_df["inchikey"])
    train_df = train_df[~train_df["inchikey"].isin(val_inchikeys)]

    return {
        "train": train_df.reset_index(drop=True),
        "validation": val_df.reset_index(drop=True),
    }