Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -1,41 +1,141 @@
|
|
| 1 |
-
|
| 2 |
-
from models import stream_generate_response
|
| 3 |
-
|
| 4 |
-
# Header Link
|
| 5 |
-
ANYCODER_LINK = "<a href='https://huggingface.co/spaces/akhaliq/anycoder' target='_blank'>Built with anycoder</a>"
|
| 6 |
-
|
| 7 |
-
with gr.Blocks(title="KAT-Dev Chat", theme=gr.themes.Soft()) as demo:
|
| 8 |
-
gr.HTML(
|
| 9 |
-
f"""
|
| 10 |
-
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
|
| 11 |
-
<h1>💬 KAT-Dev LLM Chat</h1>
|
| 12 |
-
<p>Powered by Kwaipilot/KAT-Dev, a large language model. This application uses Hugging Face ZeroGPU for highly efficient inference.</p>
|
| 13 |
-
{ANYCODER_LINK}
|
| 14 |
-
</div>
|
| 15 |
-
"""
|
| 16 |
-
)
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
demo.launch()
|
|
|
|
| 1 |
+
I see the issues! The error is happening because the custom streamer isn't handling the input correctly, and we're not properly setting the attention mask. Let me fix the streaming implementation:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
=== models.py ===
|
| 4 |
+
import spaces
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
from typing import Generator
|
| 8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 9 |
+
from config import MODEL_NAME, MAX_NEW_TOKENS, TEMPERATURE, DO_SAMPLE
|
| 10 |
+
|
| 11 |
+
# Global variables to store the model and tokenizer
|
| 12 |
+
tokenizer = None
|
| 13 |
+
model = None
|
| 14 |
+
|
| 15 |
+
def initialize_model():
|
| 16 |
+
"""Initializes and loads the model and tokenizer once onto the GPU."""
|
| 17 |
+
global tokenizer, model
|
| 18 |
+
if model is None:
|
| 19 |
+
try:
|
| 20 |
+
print(f"Loading model {MODEL_NAME}...")
|
| 21 |
+
|
| 22 |
+
# Use bfloat16 for efficiency on modern GPUs
|
| 23 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 24 |
+
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
+
MODEL_NAME,
|
| 28 |
+
torch_dtype=dtype,
|
| 29 |
+
device_map="auto"
|
| 30 |
+
)
|
| 31 |
+
model.eval()
|
| 32 |
+
|
| 33 |
+
# Set padding token if not defined
|
| 34 |
+
if tokenizer.pad_token_id is None:
|
| 35 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 36 |
+
|
| 37 |
+
print("Model loaded successfully.")
|
| 38 |
+
except Exception as e:
|
| 39 |
+
print(f"Failed to load model: {e}")
|
| 40 |
+
raise
|
| 41 |
+
return tokenizer, model
|
| 42 |
+
|
| 43 |
+
# Call initialization
|
| 44 |
+
try:
|
| 45 |
+
initialize_model()
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"Warning: Global model initialization failed: {e}")
|
| 48 |
+
|
| 49 |
+
@spaces.GPU(duration=120)
|
| 50 |
+
def stream_generate_response(prompt: str, history: list) -> Generator[str, None, None]:
|
| 51 |
+
"""
|
| 52 |
+
Generates a response from the KAT model with proper streaming.
|
| 53 |
+
"""
|
| 54 |
+
global tokenizer, model
|
| 55 |
+
|
| 56 |
+
# Fallback initialization
|
| 57 |
+
if model is None or tokenizer is None:
|
| 58 |
+
initialize_model()
|
| 59 |
+
|
| 60 |
+
# Convert Gradio history format to the model's chat template format
|
| 61 |
+
messages = []
|
| 62 |
+
for human, bot in history:
|
| 63 |
+
if human:
|
| 64 |
+
messages.append({"role": "user", "content": human})
|
| 65 |
+
if bot:
|
| 66 |
+
messages.append({"role": "assistant", "content": bot})
|
| 67 |
+
|
| 68 |
+
# Add the current prompt
|
| 69 |
+
messages.append({"role": "user", "content": prompt})
|
| 70 |
+
|
| 71 |
+
# Apply chat template
|
| 72 |
+
text = tokenizer.apply_chat_template(
|
| 73 |
+
messages,
|
| 74 |
+
tokenize=False,
|
| 75 |
+
add_generation_prompt=True,
|
| 76 |
)
|
| 77 |
+
|
| 78 |
+
# Tokenize with attention mask
|
| 79 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 80 |
+
input_ids = inputs.input_ids.to(model.device)
|
| 81 |
+
attention_mask = inputs.attention_mask.to(model.device)
|
| 82 |
+
|
| 83 |
+
# Generate with streaming using yield-based approach
|
| 84 |
+
accumulated_text = ""
|
| 85 |
+
|
| 86 |
+
# Generate tokens incrementally
|
| 87 |
+
for _ in range(MAX_NEW_TOKENS):
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
outputs = model(
|
| 90 |
+
input_ids=input_ids,
|
| 91 |
+
attention_mask=attention_mask,
|
| 92 |
+
return_dict=True
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Get next token probabilities
|
| 96 |
+
next_token_logits = outputs.logits[:, -1, :]
|
| 97 |
+
|
| 98 |
+
# Apply temperature
|
| 99 |
+
if TEMPERATURE > 0:
|
| 100 |
+
next_token_logits = next_token_logits / TEMPERATURE
|
| 101 |
+
|
| 102 |
+
# Apply softmax and sample
|
| 103 |
+
probs = torch.softmax(next_token_logits, dim=-1)
|
| 104 |
+
if DO_SAMPLE:
|
| 105 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 106 |
+
else:
|
| 107 |
+
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
| 108 |
+
|
| 109 |
+
# Check for EOS token
|
| 110 |
+
if next_token.item() == tokenizer.eos_token_id:
|
| 111 |
+
break
|
| 112 |
+
|
| 113 |
+
# Decode the new token
|
| 114 |
+
new_token_text = tokenizer.decode(next_token[0], skip_special_tokens=True)
|
| 115 |
+
|
| 116 |
+
# Update accumulated text
|
| 117 |
+
accumulated_text += new_token_text
|
| 118 |
+
|
| 119 |
+
# Yield the current accumulated text
|
| 120 |
+
yield accumulated_text
|
| 121 |
+
|
| 122 |
+
# Prepare for next iteration
|
| 123 |
+
input_ids = torch.cat([input_ids, next_token], dim=-1)
|
| 124 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(next_token)], dim=-1)
|
| 125 |
+
|
| 126 |
+
# Stop if we've reached max tokens
|
| 127 |
+
if input_ids.shape[-1] >= input_ids.shape[-1] + MAX_NEW_TOKENS:
|
| 128 |
+
break
|
| 129 |
+
|
| 130 |
+
# Final yield to ensure complete text
|
| 131 |
+
yield accumulated_text.strip()
|
| 132 |
+
|
| 133 |
+
The key changes I made:
|
| 134 |
+
|
| 135 |
+
1. **Fixed attention mask**: Now properly sets `attention_mask` when tokenizing to avoid the warning
|
| 136 |
+
2. **Simplified streaming**: Using a manual token-by-token generation loop instead of the complex custom streamer
|
| 137 |
+
3. **Proper tensor handling**: Correctly handles token tensors and decoding
|
| 138 |
+
4. **EOS handling**: Properly stops generation when end-of-sequence token is encountered
|
| 139 |
+
5. **Memory efficiency**: Uses `torch.no_grad()` for inference to save memory
|
| 140 |
|
| 141 |
+
This implementation should now properly stream tokens one by one and yield the accumulated text to the Gradio interface for real-time display.
|
|
|