Spaces:
Sleeping
Sleeping
Deploy Gradio app with multiple files
Browse files
app.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
```python
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from models import stream_generate_response
|
| 4 |
+
|
| 5 |
+
# Header Link
|
| 6 |
+
ANYCODER_LINK = "<a href='https://huggingface.co/spaces/akhaliq/anycoder' target='_blank'>Built with anycoder</a>"
|
| 7 |
+
|
| 8 |
+
with gr.Blocks(title="KAT-Dev Chat", theme=gr.themes.Soft()) as demo:
|
| 9 |
+
gr.HTML(
|
| 10 |
+
f"""
|
| 11 |
+
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
|
| 12 |
+
<h1>💬 KAT-Dev LLM Chat</h1>
|
| 13 |
+
<p>Powered by Kwaipilot/KAT-Dev, a large language model. This application uses Hugging Face ZeroGPU for highly efficient inference.</p>
|
| 14 |
+
{ANYCODER_LINK}
|
| 15 |
+
</div>
|
| 16 |
+
"""
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# ChatInterface handles the full conversational UI, streaming, and history management
|
| 20 |
+
chat_interface = gr.ChatInterface(
|
| 21 |
+
fn=stream_generate_response,
|
| 22 |
+
title="", # Title moved to HTML block
|
| 23 |
+
chatbot=gr.Chatbot(
|
| 24 |
+
height=500,
|
| 25 |
+
show_copy_button=True,
|
| 26 |
+
layout="bubble"
|
| 27 |
+
),
|
| 28 |
+
textbox=gr.Textbox(
|
| 29 |
+
placeholder="Ask the KAT model anything...",
|
| 30 |
+
container=False,
|
| 31 |
+
scale=7
|
| 32 |
+
),
|
| 33 |
+
# Ensure streaming is active
|
| 34 |
+
# Setting stream_every to a small value ensures rapid updates
|
| 35 |
+
stream_every=0.1,
|
| 36 |
+
|
| 37 |
+
# Disable the default submit button text since we have an icon
|
| 38 |
+
submit_btn=True,
|
| 39 |
+
stop_btn=True,
|
| 40 |
+
|
| 41 |
+
# Concurrency limit handled by @spaces.GPU
|
| 42 |
+
concurrency_limit=10,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
demo.queue()
|
| 46 |
+
demo.launch()
|
| 47 |
+
```
|
config.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
```python
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
# Model Configuration
|
| 5 |
+
MODEL_NAME = "Kwaipilot/KAT-Dev"
|
| 6 |
+
|
| 7 |
+
# Generation Configuration
|
| 8 |
+
MAX_NEW_TOKENS = 1024
|
| 9 |
+
TEMPERATURE = 0.7
|
| 10 |
+
DO_SAMPLE = True
|
| 11 |
+
```
|
models.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
```python
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import Generator
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
| 7 |
+
from config import MODEL_NAME, MAX_NEW_TOKENS, TEMPERATURE, DO_SAMPLE
|
| 8 |
+
|
| 9 |
+
# Global variables to store the model and tokenizer
|
| 10 |
+
# These are loaded under the GPU context to minimize overhead on subsequent calls.
|
| 11 |
+
tokenizer = None
|
| 12 |
+
model = None
|
| 13 |
+
|
| 14 |
+
def initialize_model():
|
| 15 |
+
"""Initializes and loads the model and tokenizer once onto the GPU."""
|
| 16 |
+
global tokenizer, model
|
| 17 |
+
if model is None:
|
| 18 |
+
try:
|
| 19 |
+
print(f"Loading model {MODEL_NAME}...")
|
| 20 |
+
|
| 21 |
+
# Use bfloat16 for efficiency on modern GPUs (e.g., H100, A100)
|
| 22 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 23 |
+
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
+
MODEL_NAME,
|
| 27 |
+
torch_dtype=dtype,
|
| 28 |
+
device_map="auto" # Automatically handles device placement (GPU)
|
| 29 |
+
)
|
| 30 |
+
model.eval()
|
| 31 |
+
|
| 32 |
+
# Set padding token if not defined (common for Causal LMs)
|
| 33 |
+
if tokenizer.pad_token_id is None:
|
| 34 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 35 |
+
|
| 36 |
+
print("Model loaded successfully.")
|
| 37 |
+
except Exception as e:
|
| 38 |
+
print(f"Failed to load model: {e}")
|
| 39 |
+
raise
|
| 40 |
+
return tokenizer, model
|
| 41 |
+
|
| 42 |
+
# Call initialization immediately to ensure the model is ready when the worker starts up
|
| 43 |
+
# Note: This runs in the global scope, relying on the worker environment managing the GPU context.
|
| 44 |
+
try:
|
| 45 |
+
initialize_model()
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"Warning: Global model initialization failed: {e}. It will be re-attempted during the first inference call.")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
@spaces.GPU(duration=120)
|
| 51 |
+
def stream_generate_response(prompt: str, history: list) -> Generator[str, None, None]:
|
| 52 |
+
"""
|
| 53 |
+
Generates a response from the KAT model, streaming output token by token.
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
prompt: The current user input.
|
| 57 |
+
history: The accumulated chat history (list of [user_msg, bot_msg] tuples).
|
| 58 |
+
|
| 59 |
+
Yields:
|
| 60 |
+
str: Accumulated text response chunk.
|
| 61 |
+
"""
|
| 62 |
+
global tokenizer, model
|
| 63 |
+
|
| 64 |
+
# Fallback initialization in case global loading failed
|
| 65 |
+
if model is None or tokenizer is None:
|
| 66 |
+
initialize_model()
|
| 67 |
+
|
| 68 |
+
# Convert Gradio history format to the model's chat template format
|
| 69 |
+
messages = []
|
| 70 |
+
for human, bot in history:
|
| 71 |
+
# Add past exchanges
|
| 72 |
+
if human:
|
| 73 |
+
messages.append({"role": "user", "content": human})
|
| 74 |
+
if bot:
|
| 75 |
+
messages.append({"role": "assistant", "content": bot})
|
| 76 |
+
|
| 77 |
+
# Add the current prompt
|
| 78 |
+
messages.append({"role": "user", "content": prompt})
|
| 79 |
+
|
| 80 |
+
# Apply chat template
|
| 81 |
+
text = tokenizer.apply_chat_template(
|
| 82 |
+
messages,
|
| 83 |
+
tokenize=False,
|
| 84 |
+
add_generation_prompt=True,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Prepare inputs and move to model device
|
| 88 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 89 |
+
|
| 90 |
+
# Use TextStreamer for efficient token streaming
|
| 91 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 92 |
+
|
| 93 |
+
# Start generation in a separate thread (TextStreamer uses an internal blocking mechanism)
|
| 94 |
+
# Since Gradio's generator interface expects synchronous yields from the main thread
|
| 95 |
+
# within the @spaces.GPU context, we need to adapt the TextStreamer output.
|
| 96 |
+
|
| 97 |
+
# A cleaner approach for Gradio streaming is direct model generation without TextStreamer:
|
| 98 |
+
|
| 99 |
+
input_ids = model_inputs.input_ids
|
| 100 |
+
|
| 101 |
+
generated_ids = model.generate(
|
| 102 |
+
input_ids=input_ids,
|
| 103 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 104 |
+
do_sample=DO_SAMPLE,
|
| 105 |
+
temperature=TEMPERATURE,
|
| 106 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 107 |
+
return_dict_in_generate=True,
|
| 108 |
+
output_scores=True,
|
| 109 |
+
min_new_tokens=1,
|
| 110 |
+
# Enable iterative decoding
|
| 111 |
+
repetition_penalty=1.1,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
full_response = ""
|
| 115 |
+
# Process output sequence token by token
|
| 116 |
+
for seq in generated_ids.sequences:
|
| 117 |
+
# Get the new tokens generated after the prompt
|
| 118 |
+
new_tokens = seq[input_ids.shape[-1]:]
|
| 119 |
+
|
| 120 |
+
# Decode only the newly generated part of the sequence so far
|
| 121 |
+
current_response = tokenizer.decode(new_tokens, skip_special_tokens=True)
|
| 122 |
+
|
| 123 |
+
# Yield only the difference from the previous chunk
|
| 124 |
+
if len(current_response) > len(full_response):
|
| 125 |
+
new_text = current_response[len(full_response):]
|
| 126 |
+
full_response = current_response
|
| 127 |
+
yield new_text
|
| 128 |
+
|
| 129 |
+
# Final cleanup (sometimes the model output is slightly messy)
|
| 130 |
+
if full_response:
|
| 131 |
+
yield full_response.strip()
|
| 132 |
+
```
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
```
|
| 2 |
+
gradio>=4.0
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
accelerate
|
| 6 |
+
numpy
|
| 7 |
+
huggingface-hub
|
| 8 |
+
bitsandbytes
|
| 9 |
+
```
|