Spaces:
Sleeping
Sleeping
File size: 13,864 Bytes
75849d9 040a6c6 75849d9 92d2175 75849d9 92d2175 75849d9 a9b5cb5 040a6c6 92d2175 75849d9 92d2175 75849d9 92d2175 75849d9 a9b5cb5 040a6c6 75849d9 040a6c6 1cf80b8 040a6c6 75849d9 92d2175 040a6c6 92d2175 040a6c6 1cf80b8 040a6c6 75849d9 040a6c6 75849d9 1cf80b8 040a6c6 1cf80b8 040a6c6 92d2175 040a6c6 75849d9 040a6c6 92d2175 040a6c6 a9b5cb5 040a6c6 75849d9 040a6c6 92d2175 040a6c6 92d2175 040a6c6 a9b5cb5 040a6c6 75849d9 040a6c6 75849d9 040a6c6 75849d9 040a6c6 75849d9 040a6c6 75849d9 040a6c6 92d2175 040a6c6 75849d9 040a6c6 92d2175 75849d9 040a6c6 92d2175 75849d9 040a6c6 75849d9 92d2175 040a6c6 92d2175 75849d9 040a6c6 75849d9 040a6c6 75849d9 92d2175 040a6c6 75849d9 040a6c6 92d2175 75849d9 92d2175 040a6c6 92d2175 75849d9 040a6c6 92d2175 75849d9 92d2175 040a6c6 75849d9 92d2175 040a6c6 92d2175 040a6c6 92d2175 040a6c6 75849d9 040a6c6 75849d9 92d2175 75849d9 040a6c6 75849d9 92d2175 040a6c6 75849d9 040a6c6 92d2175 040a6c6 75849d9 92d2175 75849d9 92d2175 75849d9 040a6c6 92d2175 040a6c6 92d2175 040a6c6 75849d9 040a6c6 75849d9 040a6c6 75849d9 040a6c6 92d2175 75849d9 92d2175 040a6c6 75849d9 92d2175 75849d9 92d2175 75849d9 92d2175 040a6c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
"""
AI AGENT WITH LANGGRAPH + HUGGINGFACE INTEGRATION
Clean architecture with LangChain HuggingFace Pipeline
"""
import os
import json
import time
from typing import Dict, Any, List, Optional, Annotated
from dotenv import load_dotenv
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import JsonOutputParser, StrOutputParser
from langgraph.graph import StateGraph, END
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict
from pydantic import BaseModel, Field
# LangChain HuggingFace Integration
from langchain_huggingface import HuggingFacePipeline, ChatHuggingFace, HuggingFaceEndpoint
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from utils import (
process_question_with_tools,
get_agent_state,
reset_agent_state,
ToolOrchestrator,
get_system_prompt,
get_response_prompt,
build_context_summary,
analyze_question_type
)
load_dotenv()
class AgentState(TypedDict):
messages: Annotated[List, add_messages]
question: str
task_id: str
ai_analysis: Dict[str, Any]
should_use_tools: bool
tool_processing_result: Dict[str, Any]
final_answer: str
processing_complete: bool
class QuestionAnalysis(BaseModel):
question_type: str = Field(description="Type: youtube|image|audio|wiki|file|text|math")
needs_tools: bool = Field(description="Whether tools are needed")
reasoning: str = Field(description="AI reasoning for the decision")
confidence: str = Field(description="Confidence level: high|medium|low")
class AIBrain:
def __init__(self):
self.model_name = "Qwen/Qwen3-8B"
print("π§ Initializing Qwen3-8B with LangChain HuggingFace...")
# Load tokenizer with thinking disabled
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
# Create text generation pipeline with Qwen3
self.hf_pipeline = pipeline(
"text-generation",
model=self.model_name,
tokenizer=self.tokenizer,
torch_dtype="auto",
device_map="auto",
max_new_tokens=2048,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id if self.tokenizer.eos_token_id else self.tokenizer.pad_token_id
)
# Wrap with LangChain HuggingFacePipeline
self.llm = HuggingFacePipeline(pipeline=self.hf_pipeline)
# Create ChatHuggingFace for chat interface
self.chat_model = ChatHuggingFace(llm=self.llm)
print("β
Qwen3 AI Brain with LangChain HuggingFace initialized")
def _generate_with_qwen3(self, prompt: str, max_tokens: int = 2048) -> str:
"""Generate text with Qwen3 via LangChain - thinking disabled"""
try:
# Prepare messages for chat template with thinking DISABLED
messages = [{"role": "user", "content": prompt}]
# Apply chat template with enable_thinking=False
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False # CRITICAL: Disable thinking mode
)
# Use LangChain HuggingFace pipeline for generation
response = self.llm.invoke(text)
# Clean up response - remove input prompt
if text in response:
response = response.replace(text, "").strip()
return response
except Exception as e:
print(f"β οΈ Qwen3 generation error: {str(e)}")
# Fallback to direct pipeline call
try:
result = self.hf_pipeline(prompt, max_new_tokens=max_tokens)
return result[0]['generated_text'].replace(prompt, "").strip()
except Exception as e2:
return f"AI generation failed: {str(e2)}"
def analyze_question(self, question: str, task_id: str = "") -> Dict[str, Any]:
"""Analyze question type using Qwen3 with strict JSON output"""
prompt = f"""<instruction>
Analyze this question and determine the correct tool approach. Return ONLY valid JSON.
</instruction>
<question>{question}</question>
<task_id>{task_id}</task_id>
<classification_rules>
- YouTube URLs (youtube.com, youtu.be): "youtube"
- Images, photos, chess positions, visual content: "image"
- Audio files, voice, sound, mp3: "audio"
- Excel, CSV, documents, file uploads: "file"
- Wikipedia searches, historical facts, people info: "wiki"
- Math calculations, logic, text analysis: "text"
</classification_rules>
Return this exact JSON format:
{{
"question_type": "youtube|image|audio|wiki|file|text",
"needs_tools": true,
"reasoning": "Brief explanation of classification",
"confidence": "high"
}}"""
try:
response = self._generate_with_qwen3(prompt, 512)
# Extract JSON from response
import re
json_pattern = r'\{[^{}]*\}'
json_match = re.search(json_pattern, response)
if json_match:
result = json.loads(json_match.group())
# Validate required fields
required_fields = ["question_type", "needs_tools", "reasoning", "confidence"]
if all(field in result for field in required_fields):
return result
raise ValueError("Invalid JSON structure in response")
except Exception as e:
print(f"β οΈ Qwen3 analysis failed: {str(e)[:100]}...")
# Fallback analysis
question_type = analyze_question_type(question)
return {
"question_type": question_type,
"needs_tools": question_type in ["wiki", "youtube", "image", "audio", "file"],
"reasoning": f"Fallback classification: detected {question_type}",
"confidence": "medium"
}
def generate_answer(self, question: str, tool_results: Dict[str, Any]) -> str:
"""Generate final answer using Qwen3 with context"""
if tool_results and tool_results.get("tool_results"):
context = build_context_summary(
tool_results.get("tool_results", []),
tool_results.get("cached_data", {})
)
else:
context = "No additional context available"
prompt = f"""<instruction>
Generate a comprehensive answer to the user's question using the provided context.
</instruction>
<question>{question}</question>
<context>
{context}
</context>
<output_rules>
- Provide direct, accurate answers
- Use context information when relevant
- Be concise but complete
- No thinking process in output
- Professional tone
</output_rules>
Answer:"""
response = self._generate_with_qwen3(prompt, 2048)
# Clean up response
if "Answer:" in response:
response = response.split("Answer:")[-1].strip()
return response
# Initialize AI Brain globally
ai_brain = AIBrain()
def analyze_question_node(state: AgentState) -> AgentState:
"""Analyze question using Qwen3 AI Brain"""
question = state["question"]
task_id = state.get("task_id", "")
print("π Analyzing question with Qwen3...")
analysis = ai_brain.analyze_question(question, task_id)
state["ai_analysis"] = analysis
state["should_use_tools"] = analysis.get("needs_tools", True)
print(f"π Type: {analysis.get('question_type')} | Tools: {analysis.get('needs_tools')} | Confidence: {analysis.get('confidence')}")
return state
def process_with_tools_node(state: AgentState) -> AgentState:
"""Process question with appropriate tools"""
question = state["question"]
task_id = state.get("task_id", "")
print("π§ Processing with specialized tools...")
tool_results = process_question_with_tools(question, task_id)
state["tool_processing_result"] = tool_results
successful_tools = [result.tool_name for result in tool_results.get("tool_results", []) if result.success]
if successful_tools:
print(f"β
Successful tools: {successful_tools}")
else:
print("β οΈ No tools succeeded")
return state
def answer_directly_node(state: AgentState) -> AgentState:
"""Answer directly without tools using Qwen3"""
question = state["question"]
print("π Generating direct answer with Qwen3...")
answer = ai_brain.generate_answer(question, {})
state["final_answer"] = answer
state["processing_complete"] = True
return state
def generate_final_answer_node(state: AgentState) -> AgentState:
"""Generate final answer combining tool results and AI analysis"""
question = state["question"]
tool_results = state.get("tool_processing_result", {})
print("π― Generating final answer with context...")
answer = ai_brain.generate_answer(question, tool_results)
state["final_answer"] = answer
state["processing_complete"] = True
return state
def create_agent_workflow():
"""Create LangGraph workflow for question processing"""
workflow = StateGraph(AgentState)
# Add nodes
workflow.add_node("analyze_question", analyze_question_node)
workflow.add_node("process_with_tools", process_with_tools_node)
workflow.add_node("answer_directly", answer_directly_node)
workflow.add_node("generate_final_answer", generate_final_answer_node)
# Define routing logic
def should_use_tools(state: AgentState) -> str:
return "process_with_tools" if state.get("should_use_tools", True) else "answer_directly"
# Set up the flow
workflow.set_entry_point("analyze_question")
workflow.add_conditional_edges("analyze_question", should_use_tools)
workflow.add_edge("process_with_tools", "generate_final_answer")
workflow.add_edge("answer_directly", END)
workflow.add_edge("generate_final_answer", END)
return workflow.compile()
class LangGraphUtilsAgent:
def __init__(self):
self.app = create_agent_workflow()
print("π LangGraph Agent with Qwen3 + Utils System ready")
def process_question(self, question: str, task_id: str = "") -> str:
"""Process question through the workflow"""
try:
print(f"\nπ― Processing: {question[:100]}...")
# Initialize state
initial_state = {
"messages": [HumanMessage(content=question)],
"question": question,
"task_id": task_id,
"ai_analysis": {},
"should_use_tools": True,
"tool_processing_result": {},
"final_answer": "",
"processing_complete": False
}
# Run workflow
start_time = time.time()
result = self.app.invoke(initial_state)
elapsed_time = time.time() - start_time
final_answer = result.get("final_answer", "No answer generated")
print(f"β
Completed in {elapsed_time:.2f}s")
return final_answer
except Exception as e:
print(f"β Agent error: {str(e)}")
return f"I apologize, but I encountered an error processing your question: {str(e)}"
# Global agent instance
agent = LangGraphUtilsAgent()
def process_question(question: str, task_id: str = "") -> str:
"""Main entry point for question processing"""
if not question or not question.strip():
return "Please provide a valid question."
return agent.process_question(question.strip(), task_id)
# =============================================================================
# TESTING
# =============================================================================
if __name__ == "__main__":
print("π§ͺ Testing LangGraph Utils Agent\n")
test_cases = [
{
"question": "Who was Marie Curie?",
"task_id": "",
"description": "Wikipedia factual question"
},
{
"question": "What is 25 + 17 * 3?",
"task_id": "",
"description": "Math calculation"
},
{
"question": ".rewsna eht sa \"tfel\" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI",
"task_id": "",
"description": "Reversed text question"
},
{
"question": "How many continents are there?",
"task_id": "",
"description": "General knowledge"
}
]
for i, test_case in enumerate(test_cases, 1):
print(f"\n{'='*60}")
print(f"TEST {i}: {test_case['description']}")
print(f"{'='*60}")
print(f"Question: {test_case['question']}")
try:
answer = process_question(test_case["question"], test_case["task_id"])
print(f"\nAnswer: {answer}")
except Exception as e:
print(f"\nTest failed: {str(e)}")
print(f"\n{'-'*60}")
print("\nβ
All tests completed!")
# Initialize Qwen3 with thinking mode disabled
primary_brain = HuggingFaceEndpoint(
repo_id=primary_model,
temperature=0.7,
max_new_tokens=300,
huggingfacehub_api_token=os.getenv("HF_API_KEY"),
model_kwargs={"enable_thinking": False, "thinking_prompt": "/no_thinking"}
) |