File size: 19,178 Bytes
75849d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
"""
AI AGENT WITH LANGGRAPH + AI-DRIVEN TOOL CALLING

Flow:
1. AI phân loại câu hỏi và quyết định tool
2. LangGraph nodes thực hiện tools
3. AI quyết định tiếp tục hoặc kết thúc
4. Qwen3-8B làm main reasoning engine

Architecture:
- Qwen3-8B via HuggingFace InferenceClient  
- LangGraph workflow với dynamic routing
- AI-powered decision making (không hardcode)
"""

import os
import json
import tempfile
import requests
from typing import List, Dict, Any, Annotated
from dotenv import load_dotenv

# LangGraph imports
from langgraph.graph import StateGraph, END
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict

# HuggingFace imports
from huggingface_hub import InferenceClient

# Other imports
import wikipedia
from PIL import Image
import pandas as pd
import yt_dlp
from groq import Groq

# OCR alternative - fallback to basic image processing
try:
    import easyocr
    OCR_AVAILABLE = True
except ImportError:
    OCR_AVAILABLE = False
    print("⚠️ EasyOCR not available, using fallback image processing")

# Load environment
load_dotenv()

# =============================================================================
# STATE DEFINITION
# =============================================================================

class AgentState(TypedDict):
    messages: Annotated[list, add_messages]
    question: str
    task_id: str
    file_name: str
    ai_decision: Dict[str, Any]  # AI's decision about what to do
    tool_results: Dict[str, Any]
    answer: str
    continue_workflow: bool

# =============================================================================
# QWEN3-8B AI BRAIN
# =============================================================================

class Qwen3Brain:
    """Main AI brain using Qwen3-8B for all decisions"""
    
    def __init__(self):
        self.client = InferenceClient(
            provider="auto",
            api_key=os.environ.get("HF_TOKEN", "")
        )
        self.model_name = "Qwen/Qwen3-8B"
        print("🧠 Qwen3-8B AI Brain initialized")
    
    def think(self, prompt: str) -> str:
        """Main thinking function"""
        try:
            completion = self.client.chat.completions.create(
                model=self.model_name,
                messages=[
                    {
                        "role": "user", 
                        "content": prompt
                    }
                ],
                max_tokens=2048,
                temperature=0.6
            )
            
            return completion.choices[0].message.content
            
        except Exception as e:
            return f"AI Error: {str(e)}"
    
    def decide_action(self, question: str, task_id: str = "", file_name: str = "") -> Dict[str, Any]:
        """AI decides what action to take"""
        
        prompt = f"""You are an intelligent AI agent. Analyze this question and decide the next action.

Question: {question}
Task ID: {task_id}  
File name: {file_name}

Available actions:
1. "answer_directly" - if you can answer without tools
2. "transcribe_audio" - for audio files
3. "ocr_image" - for images with text  
4. "read_file" - for Python/Excel/text files
5. "search_wikipedia" - for factual information
6. "calculate_math" - for math calculations
7. "get_youtube" - for YouTube videos
8. "download_file" - to get files from API

Respond in JSON format:
{{
    "action": "action_name",
    "reasoning": "why you chose this",
    "params": "parameters needed (if any)",
    "can_answer_now": true/false
}}

Be decisive and clear about your choice."""

        try:
            response = self.think(prompt)
            # Try to parse JSON
            return json.loads(response)
        except:
            # Fallback if JSON parsing fails
            return {
                "action": "answer_directly",
                "reasoning": "JSON parsing failed, answering directly",
                "params": "",
                "can_answer_now": True
            }
    
    def final_answer(self, question: str, tool_results: Dict[str, Any]) -> str:
        """Generate final answer based on question and tool results"""
        
        prompt = f"""Generate the final answer based on the question and any tool results.

Question: {question}
Tool results: {json.dumps(tool_results, indent=2)}

Provide a clear, direct answer to the original question. Use the tool results if available."""

        return self.think(prompt)

# =============================================================================
# TOOLS AS LANGGRAPH NODES
# =============================================================================

# Initialize components
ai_brain = Qwen3Brain()

# Initialize Groq client with error handling
try:
    groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY", ""))
    print("✅ Groq client initialized")
except Exception as e:
    print(f"⚠️ Groq client initialization failed: {e}")
    groq_client = None

# Initialize OCR with fallback
if OCR_AVAILABLE:
    ocr_reader = easyocr.Reader(['en'])
else:
    ocr_reader = None

def ai_decision_node(state: AgentState) -> AgentState:
    """AI decides what to do next"""
    question = state["question"]
    task_id = state.get("task_id", "")
    file_name = state.get("file_name", "")
    
    decision = ai_brain.decide_action(question, task_id, file_name)
    state["ai_decision"] = decision
    
    print(f"🧠 AI Decision: {decision['action']} - {decision['reasoning']}")
    
    return state

def answer_directly_node(state: AgentState) -> AgentState:
    """Answer question directly without tools"""
    question = state["question"]
    
    prompt = f"Answer this question directly: {question}"
    answer = ai_brain.think(prompt)
    
    state["answer"] = answer
    state["continue_workflow"] = False
    
    return state

def transcribe_audio_node(state: AgentState) -> AgentState:
    """Transcribe audio files"""
    task_id = state.get("task_id", "")
    
    try:
        # Download file
        file_path = download_file(task_id)
        
        if not file_path.startswith("Error") and groq_client:
            # Transcribe
            with open(file_path, "rb") as f:
                transcription = groq_client.audio.transcriptions.create(
                    file=(file_path, f.read()),
                    model="whisper-large-v3-turbo", 
                    response_format="text",
                    language="en"
                )
            result = transcription.text
        elif not groq_client:
            result = "Audio transcription not available - Groq client not initialized"
        else:
            result = file_path
            
        state["tool_results"]["audio_transcript"] = result
        
    except Exception as e:
        state["tool_results"]["audio_transcript"] = f"Audio error: {str(e)}"
    
    state["continue_workflow"] = True
    return state

def ocr_image_node(state: AgentState) -> AgentState:
    """Extract text from images"""
    task_id = state.get("task_id", "")
    
    try:
        # Download file
        file_path = download_file(task_id)
        
        if not file_path.startswith("Error"):
            if OCR_AVAILABLE and ocr_reader:
                # Use EasyOCR
                results = ocr_reader.readtext(file_path)
                text = " ".join([result[1] for result in results])
                result = text if text.strip() else "No text found"
            else:
                # Fallback: Basic image info
                try:
                    img = Image.open(file_path)
                    result = f"Image info: {img.format} {img.size} {img.mode} - OCR not available, please describe the image content"
                except:
                    result = "Image file detected but cannot process without OCR"
        else:
            result = file_path
            
        state["tool_results"]["ocr_text"] = result
        
    except Exception as e:
        state["tool_results"]["ocr_text"] = f"OCR error: {str(e)}"
    
    state["continue_workflow"] = True
    return state

def read_file_node(state: AgentState) -> AgentState:
    """Read various file types"""
    task_id = state.get("task_id", "")
    
    try:
        # Download file
        file_path = download_file(task_id)
        
        if not file_path.startswith("Error"):
            # Read based on file type
            if file_path.endswith('.py'):
                with open(file_path, 'r', encoding='utf-8') as f:
                    result = f"Python code:\n{f.read()}"
            elif file_path.endswith(('.xlsx', '.xls')):
                df = pd.read_excel(file_path)
                result = f"Excel data:\n{df.to_string()}"
            elif file_path.endswith('.csv'):
                df = pd.read_csv(file_path)
                result = f"CSV data:\n{df.to_string()}"
            else:
                with open(file_path, 'r', encoding='utf-8') as f:
                    result = f"File content:\n{f.read()}"
        else:
            result = file_path
            
        state["tool_results"]["file_content"] = result
        
    except Exception as e:
        state["tool_results"]["file_content"] = f"File reading error: {str(e)}"
    
    state["continue_workflow"] = True
    return state

def search_wikipedia_node(state: AgentState) -> AgentState:
    """Search Wikipedia"""
    question = state["question"]
    params = state["ai_decision"].get("params", "")
    
    # Use AI to determine search query if params not provided
    if not params:
        query_prompt = f"Extract the main search term for Wikipedia from: '{question}'. Return only the search term."
        search_query = ai_brain.think(query_prompt).strip()
    else:
        search_query = params
    
    try:
        wikipedia.set_lang("en")
        page = wikipedia.page(search_query)
        result = f"Title: {page.title}\nSummary: {page.summary[:2000]}"
    except:
        try:
            results = wikipedia.search(search_query, results=1)
            if results:
                page = wikipedia.page(results[0])
                result = f"Title: {page.title}\nSummary: {page.summary[:2000]}"
            else:
                result = f"No Wikipedia results for: {search_query}"
        except:
            result = f"Wikipedia search failed for: {search_query}"
    
    state["tool_results"]["wikipedia"] = result
    state["continue_workflow"] = True
    return state

def calculate_math_node(state: AgentState) -> AgentState:
    """Perform math calculations"""
    question = state["question"]
    
    # Extract math expression using AI
    extract_prompt = f"Extract ONLY the mathematical expression from: '{question}'. Return just the expression like '15+27'."
    expression = ai_brain.think(extract_prompt).strip()
    
    # Clean expression
    import re
    cleaned = re.findall(r'[\d+\-*/\(\)\.\s]+', expression)
    if cleaned:
        expression = cleaned[0].strip()
    
    try:
        # Safe evaluation
        allowed_chars = set('0123456789+-*/.() ')
        if all(c in allowed_chars for c in expression):
            result = str(eval(expression))
        else:
            result = "Invalid mathematical expression"
    except Exception as e:
        result = f"Calculation error: {str(e)}"
    
    state["tool_results"]["calculation"] = result
    state["continue_workflow"] = True
    return state

def get_youtube_node(state: AgentState) -> AgentState:
    """Get YouTube video info"""
    params = state["ai_decision"].get("params", "")
    
    try:
        ydl_opts = {
            'writesubtitles': True,
            'writeautomaticsub': True,
            'subtitleslangs': ['en'],
            'skip_download': True,
            'quiet': True
        }
        
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(params, download=False)
            title = info.get('title', 'Unknown')
            description = info.get('description', 'No description')[:500]
            result = f"Video: {title}\nDescription: {description}"
            
    except Exception as e:
        result = f"YouTube error: {str(e)}"
    
    state["tool_results"]["youtube"] = result
    state["continue_workflow"] = True
    return state

def download_file_node(state: AgentState) -> AgentState:
    """Download file from API"""
    task_id = state.get("task_id", "")
    
    try:
        result = download_file(task_id)
        state["tool_results"]["downloaded_file"] = result
    except Exception as e:
        state["tool_results"]["downloaded_file"] = f"Download error: {str(e)}"
    
    state["continue_workflow"] = True
    return state

def final_answer_node(state: AgentState) -> AgentState:
    """Generate final answer using AI"""
    question = state["question"]
    tool_results = state.get("tool_results", {})
    
    answer = ai_brain.final_answer(question, tool_results)
    state["answer"] = answer
    state["continue_workflow"] = False
    
    return state

# =============================================================================
# HELPER FUNCTIONS
# =============================================================================

def download_file(task_id: str) -> str:
    """Download file from API"""
    try:
        api_url = "https://agents-course-unit4-scoring.hf.space"
        file_url = f"{api_url}/files/{task_id}"
        
        response = requests.get(file_url, timeout=30)
        if response.status_code == 200:
            # Determine file extension
            content_type = response.headers.get('content-type', '')
            if 'audio' in content_type:
                suffix = '.mp3'
            elif 'image' in content_type:
                suffix = '.png'
            elif 'excel' in content_type:
                suffix = '.xlsx'
            elif 'python' in content_type:
                suffix = '.py'
            else:
                suffix = '.tmp'
                
            with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp_file:
                tmp_file.write(response.content)
                return tmp_file.name
        else:
            return f"Error: HTTP {response.status_code}"
    except Exception as e:
        return f"Error: {str(e)}"

# =============================================================================
# LANGGRAPH WORKFLOW
# =============================================================================

def create_ai_agent_workflow():
    """Create LangGraph workflow with AI-driven routing"""
    
    workflow = StateGraph(AgentState)
    
    # Add all nodes
    workflow.add_node("decision", ai_decision_node)
    workflow.add_node("direct_answer", answer_directly_node)
    workflow.add_node("audio_transcribe", transcribe_audio_node)
    workflow.add_node("image_ocr", ocr_image_node)
    workflow.add_node("file_read", read_file_node)
    workflow.add_node("wiki_search", search_wikipedia_node)
    workflow.add_node("math_calc", calculate_math_node)
    workflow.add_node("youtube_get", get_youtube_node)
    workflow.add_node("file_download", download_file_node)
    workflow.add_node("generate_answer", final_answer_node)
    
    # Dynamic routing based on AI decision
    def route_by_ai_decision(state: AgentState) -> str:
        action = state.get("ai_decision", {}).get("action", "answer_directly")
        print(f"🔀 Routing to: {action}")
        return action
    
    # Conditional routing from decision
    workflow.add_conditional_edges(
        "decision",
        route_by_ai_decision,
        {
            "answer_directly": "direct_answer",
            "transcribe_audio": "audio_transcribe", 
            "ocr_image": "image_ocr",
            "read_file": "file_read",
            "search_wikipedia": "wiki_search",
            "calculate_math": "math_calc",
            "get_youtube": "youtube_get",
            "download_file": "file_download"
        }
    )
    
    # Continue or end based on workflow state
    def should_continue(state: AgentState) -> str:
        if state.get("continue_workflow", False):
            return "generate_answer"
        else:
            return END
    
    # Add continue/end logic for tool nodes
    tool_nodes = [
        "audio_transcribe", "image_ocr", "file_read", 
        "wiki_search", "math_calc", "youtube_get", "file_download"
    ]
    
    for node in tool_nodes:
        workflow.add_conditional_edges(
            node,
            should_continue,
            {
                "generate_answer": "generate_answer",
                END: END
            }
        )
    
    # End edges
    workflow.add_edge("direct_answer", END)
    workflow.add_edge("generate_answer", END)
    
    # Set entry point
    workflow.set_entry_point("decision")
    
    return workflow.compile()

# =============================================================================
# MAIN AGENT CLASS
# =============================================================================

class LangGraphAIAgent:
    """LangGraph agent with AI-driven tool calling"""
    
    def __init__(self):
        self.workflow = create_ai_agent_workflow()
        print("🤖 LangGraph AI Agent with Qwen3-8B ready!")
        print("🔧 Available tools: transcribe_audio, ocr_image, read_file, search_wikipedia, calculate_math, get_youtube")
    
    def process_question(self, question: str, task_id: str = "", file_name: str = "") -> str:
        """Process question through AI-driven workflow"""
        try:
            # Initialize state
            initial_state = {
                "messages": [],
                "question": question,
                "task_id": task_id,
                "file_name": file_name,
                "ai_decision": {},
                "tool_results": {},
                "answer": "",
                "continue_workflow": False
            }
            
            # Run workflow
            result = self.workflow.invoke(initial_state)
            
            return result.get("answer", "No answer generated")
            
        except Exception as e:
            return f"Agent error: {str(e)}"

# =============================================================================
# GLOBAL AGENT
# =============================================================================

# Create global agent instance
agent = LangGraphAIAgent()

def process_question(question: str, task_id: str = "", file_name: str = "") -> str:
    """Main entry point"""
    return agent.process_question(question, task_id, file_name)

# =============================================================================
# TEST
# =============================================================================

if __name__ == "__main__":
    test_questions = [
        "What is 25 + 17?",
        "Who was Mercedes Sosa?", 
        "What is the opposite of left?",
        "How many continents are there?"
    ]
    
    print("🧪 Testing LangGraph AI Agent:")
    for i, q in enumerate(test_questions):
        print(f"\n--- Test {i+1} ---")
        print(f"Q: {q}")
        answer = process_question(q)
        print(f"A: {answer}")
        print("-" * 50)