Spaces:
Sleeping
Sleeping
| """ | |
| GRADIO INTERFACE FOR LANGGRAPH AI AGENT | |
| Features: | |
| - Interactive Q&A with AI agent | |
| - Support for task_id and file uploads | |
| - Real-time processing with Qwen3-8B | |
| - Beautiful UI với LangGraph workflow visualization | |
| """ | |
| import os | |
| import gradio as gr | |
| import requests | |
| import pandas as pd | |
| from agent import process_question | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # --- Basic Agent Definition --- | |
| # ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------ | |
| class BasicAgent: | |
| def __init__(self): | |
| print("BasicAgent initialized.") | |
| def __call__(self, question: str) -> str: | |
| print(f"Agent received question (first 50 chars): {question[:50]}...") | |
| answer = process_question(question) | |
| print(f"Agent returning answer: {answer}") | |
| return answer | |
| def run_and_submit_all(profile: gr.OAuthProfile | None = None): | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # Determine HF Space Runtime URL and Repo URL | |
| space_id = os.getenv("SPACE_ID", "unknown_space") | |
| if profile: | |
| username = f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in, using anonymous.") | |
| username = "anonymous" | |
| print(f"Running as user: {username}") | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # Instantiate Agent | |
| try: | |
| agent = BasicAgent() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # Fetch Questions | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except Exception as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| # Run Agent on each question | |
| results_log = [] | |
| answers_payload = [] | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| continue | |
| try: | |
| submitted_answer = agent(question_text) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| except Exception as e: | |
| print(f"Error on task {task_id}: {e}") | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {e}"}) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "No answers to submit.", pd.DataFrame(results_log) | |
| # Submit answers | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Score: {result_data.get('score', 'N/A')}%\n" | |
| f"Message: {result_data.get('message', '')}" | |
| ) | |
| return final_status, pd.DataFrame(results_log) | |
| except Exception as e: | |
| print(f"Submission failed: {e}") | |
| return f"Submission failed: {e}", pd.DataFrame(results_log) | |
| # --- Build Gradio Interface --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Basic Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Login to Hugging Face using the button below (required for submission) | |
| 2. Click 'Run Evaluation & Submit All Answers' to fetch, run the agent, and submit. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(debug=True, share=False) |