""" GRADIO INTERFACE FOR LANGGRAPH AI AGENT Features: - Interactive Q&A with AI agent - Support for task_id and file uploads - Real-time processing with Qwen3-8B - Beautiful UI với LangGraph workflow visualization """ import os import gradio as gr import requests import pandas as pd from agent import process_question # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Basic Agent Definition --- # ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------ class BasicAgent: def __init__(self): print("BasicAgent initialized.") def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") answer = process_question(question) print(f"Agent returning answer: {answer}") return answer def run_and_submit_all(profile: gr.OAuthProfile | None = None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ # Determine HF Space Runtime URL and Repo URL space_id = os.getenv("SPACE_ID", "unknown_space") if profile: username = f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in, using anonymous.") username = "anonymous" print(f"Running as user: {username}") api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # Instantiate Agent try: agent = BasicAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # Fetch Questions try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid.", None print(f"Fetched {len(questions_data)} questions.") except Exception as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None # Run Agent on each question results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: print(f"Error on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {e}"}) if not answers_payload: print("Agent did not produce any answers to submit.") return "No answers to submit.", pd.DataFrame(results_log) # Submit answers submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score', 'N/A')}%\n" f"Message: {result_data.get('message', '')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: print(f"Submission failed: {e}") return f"Submission failed: {e}", pd.DataFrame(results_log) # --- Build Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Login to Hugging Face using the button below (required for submission) 2. Click 'Run Evaluation & Submit All Answers' to fetch, run the agent, and submit. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": demo.launch(debug=True, share=False)