Spaces:
Sleeping
Sleeping
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import gradio as gr | |
| import torch | |
| title = 'ChatBot' | |
| description = 'This is a test model i created to learn how to create one haha' | |
| examples = [['What is life?']] | |
| tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-large') | |
| model = AutoModelForCausalLM.from_pretrained('microsoft/DialoGPT-large') | |
| def predict(input, history=[]): | |
| new_user_input_ids = tokenizer.encode( | |
| input + tokenizer.eos_token, return_tensors='pt' | |
| ) | |
| bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
| history = model.generate( | |
| bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id | |
| ).tolist() | |
| response = tokenizer.decode(history[0]).split('<|endoftext|>') | |
| response = [ | |
| (response[i], response[i+1]) for i in range(0, len(response) - 1, 2) | |
| ] | |
| return response, history | |
| gr.Interface( | |
| fn=predict, | |
| title=title, | |
| description=description, | |
| examples=examples, | |
| inputs=['text', 'state'], | |
| outputs=['chatbot', 'state'], | |
| ).launch() |