Update app.py
Browse filesTranslate prompt and extract longer context chunks
app.py
CHANGED
|
@@ -41,28 +41,53 @@ def respond(
|
|
| 41 |
|
| 42 |
print(datetime.now())
|
| 43 |
print(system_message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
# retriever = vector_db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": score, "k": 10})
|
| 46 |
-
retriever = vector_db.as_retriever(search_type="similarity", search_kwargs={"k": 10})
|
| 47 |
# retriever = vector_db.as_retriever(search_type="mmr")
|
| 48 |
-
documents = retriever.invoke(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
spacer = " \n"
|
| 51 |
context = ""
|
|
|
|
| 52 |
|
| 53 |
#print(message)
|
| 54 |
-
print(len(documents))
|
| 55 |
|
| 56 |
for doc in documents:
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
context += "#######" + spacer
|
| 60 |
-
context += "# Case number: " + doc.metadata["case_nb"] + spacer
|
| 61 |
-
context += "# Case source: " + ("Swiss Federal Court" if doc.metadata["case_ref"] == "ATF" else "European Court of Human Rights") + spacer
|
| 62 |
-
context += "# Case date: " + doc.metadata["case_date"] + spacer
|
| 63 |
-
context += "# Case url: " + doc.metadata["case_url"] + spacer
|
| 64 |
-
context += "# Case text: " + doc.page_content + spacer
|
| 65 |
-
|
| 66 |
|
| 67 |
#print("# Case number: " + doc.metadata["case_nb"] + spacer)
|
| 68 |
#print("# Case url: " + doc.metadata["case_url"] + spacer)
|
|
@@ -114,7 +139,7 @@ demo = gr.ChatInterface(
|
|
| 114 |
additional_inputs=[
|
| 115 |
gr.Textbox(value="You are an assistant in Swiss Jurisprudence cases.", label="System message"),
|
| 116 |
gr.Slider(minimum=1, maximum=24000, value=5000, step=1, label="Max new tokens"),
|
| 117 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0, step=0.1, label="Temperature"),
|
| 118 |
gr.Slider(
|
| 119 |
minimum=0.1,
|
| 120 |
maximum=1.0,
|
|
|
|
| 41 |
|
| 42 |
print(datetime.now())
|
| 43 |
print(system_message)
|
| 44 |
+
|
| 45 |
+
prompt_en = client.text_generation("Improve or translate the following user's prompt to English giving only the new prompt without explanations or additional text: " + message)
|
| 46 |
+
prompt_de = client.text_generation("Improve or translate the following user's prompt to German giving only the new prompt without explanations or additional text: " + message)
|
| 47 |
+
prompt_fr = client.text_generation("Improve or translate the following user's prompt to French giving only the new prompt without explanations or additional text: " + message)
|
| 48 |
+
prompt_it = client.text_generation("Improve or translate the following user's prompt to Italian giving only the new prompt without explanations or additional text: " + message)
|
| 49 |
+
|
| 50 |
+
print(prompt_en)
|
| 51 |
+
print(prompt_de)
|
| 52 |
+
print(prompt_fr)
|
| 53 |
+
print(prompt_it)
|
| 54 |
+
|
| 55 |
|
| 56 |
# retriever = vector_db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": score, "k": 10})
|
| 57 |
+
# retriever = vector_db.as_retriever(search_type="similarity", search_kwargs={"k": 10})
|
| 58 |
# retriever = vector_db.as_retriever(search_type="mmr")
|
| 59 |
+
# documents = retriever.invoke(message)
|
| 60 |
+
|
| 61 |
+
documents_en = vector_db.similarity_search_with_score(prompt_en, k=4)
|
| 62 |
+
documents_de = vector_db.similarity_search_with_score(prompt_de, k=4)
|
| 63 |
+
documents_fr = vector_db.similarity_search_with_score(prompt_fr, k=4)
|
| 64 |
+
documents_it = vector_db.similarity_search_with_score(prompt_it, k=4)
|
| 65 |
|
| 66 |
+
documents = documents_en + documents_de + documents_fr + documents_it
|
| 67 |
+
|
| 68 |
+
documents = sorted(documents, key=lambda x: x[1])[:4]
|
| 69 |
+
|
| 70 |
spacer = " \n"
|
| 71 |
context = ""
|
| 72 |
+
nb_char = 2000
|
| 73 |
|
| 74 |
#print(message)
|
| 75 |
+
print(f"* Documents found: {len(documents)}")
|
| 76 |
|
| 77 |
for doc in documents:
|
| 78 |
+
case_text = df[df["case_url"] == doc[0].metadata["case_url"]].case_text.values[0]
|
| 79 |
+
index = case_text.find(doc[0].page_content)
|
| 80 |
+
start = max(0, index - nb_char)
|
| 81 |
+
end = min(len(case_text), index + len(doc[0].page_content) + nb_char)
|
| 82 |
+
case_text_summary = case_text[start:end]
|
| 83 |
+
|
| 84 |
context += "#######" + spacer
|
| 85 |
+
context += "# Case number: " + doc[0].metadata["case_nb"] + spacer
|
| 86 |
+
context += "# Case source: " + ("Swiss Federal Court" if doc[0].metadata["case_ref"] == "ATF" else "European Court of Human Rights") + spacer
|
| 87 |
+
context += "# Case date: " + doc[0].metadata["case_date"] + spacer
|
| 88 |
+
context += "# Case url: " + doc[0].metadata["case_url"] + spacer
|
| 89 |
+
#context += "# Case text: " + doc[0].page_content + spacer
|
| 90 |
+
context += "Case extract: " + case_text_summary + spacer
|
| 91 |
|
| 92 |
#print("# Case number: " + doc.metadata["case_nb"] + spacer)
|
| 93 |
#print("# Case url: " + doc.metadata["case_url"] + spacer)
|
|
|
|
| 139 |
additional_inputs=[
|
| 140 |
gr.Textbox(value="You are an assistant in Swiss Jurisprudence cases.", label="System message"),
|
| 141 |
gr.Slider(minimum=1, maximum=24000, value=5000, step=1, label="Max new tokens"),
|
| 142 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
|
| 143 |
gr.Slider(
|
| 144 |
minimum=0.1,
|
| 145 |
maximum=1.0,
|